February 7, 2023
Title: The univalence principle (MI-talk)
Speaker: Paige North
The Equivalence Principle is an informal principle asserting that equivalent mathematical objects have the same properties. For example, group theory has been developed so that isomorphic groups have the same group-theoretic properties, and category theory has been developed so that equivalent categories have the same category-theoretic properties (though sometimes other, ‘evil’ properties are considered). Vladimir Voevodsky established Univalent Foundations as a foundation of mathematics (based on dependent type theory) in which the Equivalence Principle for types (the basic objects of type theory) is a theorem. Later, versions of the Equivalence Principle for set-based structures such as groups and categories were shown to be theorems in Univalent Foundations.
In joint work with Ahrens, Shulman, and Tsementzis, we formulate and prove versions of the Equivalence Principle for a large class of categorical and higher categorical structures in Univalent Foundations. Our work encompasses bicategories, dagger categories, opetopic categories, and more.