February 9, 2021
Title: Periodic versions of algebraic K-theory
Speaker: Lennart Meier
Algebraic K-theory is a fundamental invariant of rings. Originally conceived in algebraic geometry by Grothendieck, today it plays a significant role also in topology and number theory. It was an insight of Thomason that one can define periodic versions of algebraic K-theory. Recent work of Bhatt-Clausen-Mathew and Land, Mathew, Tamme and myself shows that this periodic algebraic K-theory has very nice properties. If time permits, I will also discuss our work on higher periodic versions.