ERRATA

The following is a list of errata for our book ‘Simplicial and dendroidal homotopy
theory’. We thank Kensuke Arakawa, Miguel Barata, Thomas Blom, Vladimir
Hinich, Francesca Pratali, and Sven van Nigtevecht for pointing out some of the
inaccuracies addressed below.

p-16, Definition 1.20. In the definition of a tree, the function O: V' — E should be
injective. (Every vertex is supposed to have precisely one output edge, of course.)

p.107, Example 3.20(c). In the sentence following the display, e should be x.

p-254, proof of Theorem 6.51. In the last sentence of the first paragraph, it is not
automatic that k(A4, X) is a Kan complex. Indeed, this is generally only true if
A is a normal dendroidal set. However, this case suffices for the proof, since the
saturated class of normal monomorphisms is generated by normal monos between
normal dendroidal sets.

p-354, Definition 9.1. There is a typo here: n > 0 should read n > 0.

p-358, Theorem 9.9. Although not explicitly stated, it is useful to note that the
model structure of the theorem is cofibrantly generated.

p-486, paragraph before Lemma 12.6. Here it is claimed that for a Reedy cofibrant
dendroidal space A, the cosimplicial object A X Afe] is a cosimplicial resolution
of A, with a reference to Example 11.15. However, that example concerns the
projective model structure, not the Reedy one. Nonetheless, the same argument
given there will apply here. Indeed, to check that A X Ale] is a Reedy cofibrant
cosimplicial object it suffices to show that for each n > 0 and each Reedy cofibration
of dendroidal spaces i: U — V, the map

URA[R]UV KIA[n] = V X Aln],

is again a Reedy cofibration of dendroidal spaces. One can take i to be a generating
Reedy cofibration of the form

TR OA[mM|UIT K Alm] — T K A[m],
in which case the map above becomes
T X (0A[m] x A[n] U Alm] x 0A[n]) UIT X (A[m] x Aln]) = T X (A[m] x Aln]).
Clearly this is again a Reedy cofibration.

p-508. The proof of Corollary 12.42 has a gap. We are checking associativity
of the derived tensor product ®“ on the homotopy category Ho(dSpacespgc)-
For dendroidal spaces X and Y, we have defined X ®" Y by taking projectively
cofibrant replacements of X and Y and then taking the tensor product of those.
To prove associativity of the derived tensor product, it will suffice to check that
for projectively cofibrant X, Y, and Z and a projectively cofibrant replacement
W —- X ®Y, the composite ‘associator map’

WRZ—-(XY)Z-XQY®Z

is a weak equivalence. Note that the current proof of Corollary 12.42 does not take

the cofibrant replacement W into account and only deals with the second map.

By the usual skeletal induction we may reduce to the case where X and Y are
1



2 ERRATA

represented by trees S and T respectively. (If desired, one can reduce to the case
where Z is a tree as well.) It remains to argue the following:

Lemma 1. The map
WeZ—-(SeT)®Z

1s a weak equivalence in dSpacespg.

The proof of the lemma relies on the observation that certain colimit diagrams
are actually homotopy colimits. To be precise, we call a diagram f: I — £ in a
cofibrantly generated model category £ a homotopy colimit diagram if the natural
map hocolim; f — colim; f is a weak equivalence. (Of course the term hocolim; f is
only well-defined up to weak equivalence, but for the definition it does not matter.)
To state our preparatory lemma, write S ® T' as a union U; A; of shuffles A; with
1 <4 <n. Write P(n) for the poset of nonempty subsets of {1,...,n}, ordered by
reverse inclusion. If we set Ay := N;cy Ay, then we can write

S®T = colimyepn)Av-
Lemma 2. The diagrams
Uw— Ay and U— Ay @7

are homotopy colimit diagrams in dSpacesg (or, equivalently, in dSpacesp ).

Proof. Since the identity functor gives a Quillen equivalence between the projec-
tive and the Reedy model structures on dSpaces, the notion of homotopy colimit
diagram is indeed the same with respect to both model structures. Interpret P(n)
as a Reedy category in which every morphism is positive. For a general model
category £, we observe that the projective and Reedy model structures agree on
EP(™) | Thus, a diagram f: P(n) — £ is projectively cofibrant precisely if for every
U € P(n), the latching map

colimpcy f(V) = f(U)

is a cofibration in £. In the specific case where £ = dSpacesy and f(U) = Ay,
this becomes the inclusion

U Av c Av.

Ugv
This is a normal monomorphism of dendroidal sets (since Ay is representable, hence
normal) and therefore a Reedy cofibration of dendroidal spaces. It follows that the
diagram is projectively cofibrant and its colimit is ‘the’ homotopy colimit.

For the second diagram, first note that — ® Z preserves intersections between shuf-
fles, so that Ay ® Z = Nijey(A; ® Z). Tt follows that in this case the latching map
may be identified with the inclusion of the subobject

ez carez
ugv

Again, this is a normal monomorphism and the proof is complete. O

Proof of Lemma 1. It follows from Lemma 12.45 that the tensor product with Z
defines a left Quillen functor

— ® Z: dSpacespg — dSpacesyg.
In particular, it preserves weak equivalences between projectively cofibrant objects

and it suffices to prove the lemma for a single choice of cofibrant replacement
W — S®T. Take a projectively cofibrant replacement Y of the diagram U — Ay

in the functor category dSpacesi(n). The colimit is a left Quillen functor, so that
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H_I}np (n) Y is a projectively cofibrant dendroidal space. Moreover, it is a model for

the homotopy colimit of U — Ay, so that the map ligp(n) Y — A is a projective
weak equivalence by Lemma 2. Thus, we may take W = hAq P(n) Y as our cofibrant

replacement.

Since — ® Z is left Quillen it preserves homotopy colimits, so that W ® Z is the
homotopy colimit of the diagram

P(n) — dSpacespg: U — Ay ® Z.
From the second part of Lemma 2 we conclude that the map
W ® Z — COlimUep(n)AU 039 Z =~ (S X T) X Z

is a weak equivalence. O

Finally, for a different approach to constructing a symmetric monoidal structure
on the homotopy category of dendroidal spaces we refer to the appendix of ‘On the
equivalence of Lurie’s oo-operads and dendroidal oo-operads’ by Hinich—-Moerdijk.

p-516. The proof of Theorem 12.60 and its Corollary 12.61 only apply to open
reduced dendroidal spaces, rather than closed ones. The reason is that the ‘reduc-
tion functor’ introduced above the theorem is only well-defined on open trees. In
particular, Theorem 12.62 remains valid.

p-528. In the proof of Proposition 13.7 we implicitly use the following observation:

Lemma 3. Let fi: €2 F: f* be a Quillen equivalence between model categories.
Suppose that £ and Fy are left Bousfield localizations of £ and F respectively. If
f* preserves and detects local objects (meaning X is N -local if and only if f*X is
A-local), then the pair fi: Ex &= Fa: f* is a Quillen equivalence as well.

Proof. If f* preserves local objects, then its left adjoint f; sends A-equivalences to
N-equivalences and is therefore also left Quillen for the localized model structures.
Consider the following diagram of right adjoints:

Ho(&) « 2" Ho(F)

[ |

Ho(£y) <X Ho(Fy).

The vertical arrows are fully faithful (being the inclusions of the full subcategories
on local objects) and the upper horizontal arrow is an equivalence of categories
by assumption. Hence the bottom arrow is fully faithful as well. It is essentially
surjective by the assumption that f* detects local objects. We conclude that the
bottom arrow is an equivalence of categories. O

p-530, right above Lemma 13.9. We are considering a projectively fibrant dendroidal
space B and a Reedy fibrant replacement f: B — B’ of it, inducing a Quillen
equivalence

dSpacesp/B EiR dSpacesy/B’.

We claim that pushing forward the covariant localization of the projective model
structure dSetsp/B to the model category dSetsr/B’ gives the covariant local-
ization (dSpacesp/B’)cov. To see this, one needs that every covariant localizing
morphism ¢[T] — T — B’ in dSpacesy/B’ can be lifted, up to weak equivalence,
to a covariant weak equivalence in dSpacesp/B. Since B — B’ is a projective
weak equivalence, any morphism T — B’ can be lifted to a morphism T — B up
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to homotopy; this suffices to find a covariant localizing morphism ¢[T] - T — B
in dSpacesp /B lifting the previous one up to homotopy.

p.574. Lemma 14.24: The proof is an inductive argument on the generating sparse
cofibrations. However, it doesn’t explicitly address the base case of the induction,
which is the evident observation that for the dendroidal space X = Cj X Aln] the
map X — N7(X) is an isomorphism.



