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Structure of the talk.

1. History and background for Virasoro constraints

2. History and Background for wall-crossing and vertex algebras

3. Geometric construction of Joyce’s vertex algebras

4. How the two intertwine

5. Applications
5.1 Quivers
5.2 Curves and Surfaces
5.3 What next?

6. Idea of the proof.



Witten’s conjecture

1. Moduli space of algebraic pointed curvesMg,n parametrizing (C , x1, . . . , xn) :

,

Figure: (C , x1, . . . , xn)

where we label the points by x1, . . . , xn.

2. There are line bundles Li →Mg,n which at each point of it (as in 2) are given by
T∗
C |xi . Denote the powers of the first Chern classes by τd = c1(Li )

d :

,

Figure: Li |(C,x1,··· ,xn) = T∗
C |xi



KdV hierarchy
1. Gustav de Vries and Diederik Johannes Korteweg studied the differential

equation describing waves on shallow water in a canal:
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2. For a function Φ(t⃗; x), there is a generalization of the above called KdV hierarchy :
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3. Amazingly, by comparing two different approaches to 2-dimensional quantum
gravity, Witten expected that the integrals〈
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https://youtu.be/cerbtFE2Fks
https://youtu.be/cerbtFE2Fks
https://youtu.be/cerbtFE2Fks


Witten’s conjecture II

1. ... satisfy the KdV hierarchy of PDE’s.

2. Set Φ = ∂
∂x2

F (x , t⃗), then
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for all k ≥ 1.

3. Additionally, it satisfies the string equation:

∂

∂x
F =

x2

2
+

∑
i

ti+1
∂

∂ti
F .

4. It was proved famously by Kontsevich (92’) and later by Mirzakhani (07’) who
both won Fields Medals in part for this work.



Virasoro constraints

1. Dijkgraaf, Verlinde and Verlinde (90’) defined a sequence of second order
differential operators Lk on CJx , t1, · · · , tnK, such that the τ -function

τ = exp
[ 1

2λ2
F (x , t⃗)

]
satisfies

Lkτ = 0 .

2. T. Eguchi, K. Hori and C.-S. Xiong (97’) extended these operators for
Mg,n(X , β) which parametrizes (C , f , x1, . . . , xn) for a map f : C → X such that
f ([C ]) = β ∈ H2(X ). They conjectured that similar vanishings hold in this case.

3. This was proved by Okounkov1–Pandharipande (03’) for curves X = C and by
Givental (01’) and Teleman (12’) for toric X .

4. Fix a basis B = {v} ⊂ H∗(X ) with 1 denoting the generator of H0(X ) being one
of its elements, then Fg (x , t⃗) is replaced by

FX
g =

∑
a⃗,k⃗n,
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1Another Fields Medalist who received it partly due to his work on Virasoro constraints.



Virasoro constraints II

1. where 〈(
τk1 (v1)

)a1(τk2 (v2))a2 · · · (τkl (vl ))al ⟩g,n
=

∫
[Mg,n(X ,β)]vir

(
τk1 (v1)

)a1(τk2 (v2))a2 · · · (τkl (vl ))al .
The descendent classes τki (vi ) = τki ev∗i (vi ) are defined in terms of

evi :Mg,n(X , β)→ X mapping each (C , x1, . . . , xn, f ) to f (xi ).



Virasoro constraints for sheaves and pairs

1. When moving on to the sheaf side of the story, consider either a moduli space M
parametrizing sheaves [F ] or P parametrizing morphisms OX → F on X with the
universal sheaf or pair

G on X ×M , respectively OX×P → G on X × P ,

the descendent classes are replaced by

chHi (v) = π2 ,∗
(
π∗
1 (v)chi+dim(X )−p(G)

)
,

chi (v) = chH
i+⌊ p−q

2
⌋
(v) , v ∈ Hp,q(X ) ,

where X
π1←−− X ×M

π2−−→ M are the projections.

2. The main result of Moreira–Oblomkov–Okounkov–Pandharipande(20’) is
transporting Virasoro constraints from GW theory to PT stable pairs moduli

space P parametrizing OX
s−→ F , where dim coker(s) = 0 and F is a pure sheaf in

some cases (toric X , stationary descendents)



Virasoro constraints for sheaves: set up

1. To formulate Virasoro constraints in a nice way, it is useful to extend the moduli
space M to include all sheaves and even more their complexes

· · · → Fa → Fa+1 → · · ·Fb−1 → Fb → · · ·

The result is denoted byMX and by Gross(19’) has a completely explicit
homology

H∗(MX ) = CJtvi : v ∈ B, i ≥ 1K .

2. The universal sheaf is also extended to G on X ×MX , where the same definition
leads to classes chi (v) acting on the homology as a derivative:

chk (v) ∩ (−) =
∂

∂tvk
.

3. Using the virtual fundamental class [M]vir, because M is not smooth in general,
define 〈

chk1 (v1) · · · chkn (vn)⟩M =

∫
[M]vir

chk1 (v1) · · · chkn (vn)



Virasoro constraints for sheaves: formula
1. Using the previously introduced notation, it becomes clear that

ι∗[M]vir =
∑

k⃗,vi∈B

〈
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replaces FX in the GW potential.
2. Under the Assumption A that Hp,q(X ) = 0 unless |p − q| ≤ 1 one may now

define the Virasoro operators Lk acting on H∗(MX ) by Lk = Tk + Rk , where

Tk =
∑
i+j=k
v∈B

(−1)dim X−q i!j!chHi (v)ch
H
j (v̄ · td(X ))∩ ,

Rk =
∑
j≥1
v∈B

(
j +

⌊p − q

2

⌋)
(k+1)

tvj−k

∂

∂tvj
,

and (a)(b) = a(a− 1) · · · (a− b + 1).
3. Fix α the K-theory class of sheaves in M. Because of some intertwining with GW

theory, one additionally needs

Sk = −
(k + 1)!

rk(α)
chHk+1(pt) ◦ R−1

for the Virasoro constraints to hold.
4. Claim: In many cases the Virasoro constraints

(Tk + Rk + Sk )ι∗[M]vir = 0

hold.



Wall-crossing

1. The idea of wall-crossing is simple. Changing some parameter in a parameter
space Stab, one assigns to each point an invariant that jumps on some real
codimension 1 walls:

This appears already in Donaldson theory, where the parameter is a metric and
the invariants are Donaldson invariants counting ASD instantons.

2. Joyce (03’-04’) formulated a general framework for abelian categories that was
later extended by Joyce–Song and Kontsevich–Soibelman to Calabi–Yau
3-categories and Donaldson–Thomas invariants.

3. Work in the abelian category of sheaves Coh(X ) with a family of stability
conditions on A denoted by W . For example, it could be a set of ample
line-bundles H with the associated µH -stability
µH(E) =

(
ch1(E)Hd−1

)
/
(
ch0(E)Hd

)
and E being (semi-)stable if for each

subobject E ′ ⊂ E

µH(E
′)

<
(−) µH(E)



Wall-crossing and vertex algebras

1. The wall-crossing invariants denoted by δHα then give a (motivic) count of
µH -semistable invariants in class α. Changing H to H′ leads to wall-crossing

formulae which express δH
′

α in terms of combinations of δHαi
such that

α = α1 + · · ·+ αk .

The expression contains Lie-brackets [δα, δβ ] coming from Hall-algebras.

2. The virtual fundamental classes [MH
α ]vir of µH -semistable sheaves in class α are

not motivic. To remedy this, Gross–Joyce–Tanaka introduced wall-crossing in
terms of vertex algebras.

3. Vertex algebras were introduce by Borcherds (86’) to study infinite dimensional
Lie algebras and later prove the Monstrous moonshine conjectures. He received
his fields medal in the same year as M. Kontsevich in part for this definition.



Vertex algebras
1. A vertex algebra is the data of a Z-graded vector space V∗ over C together with

1.1 a vacuum vector |0⟩ ∈ V0,
1.2 a linear operator T : V∗ → V∗+2 called the translation operator,
1.3 and a state-field correspondence which is a degree 0 linear map

Y : V∗ −→ End(V∗)Jz, z
−1K ,

denoted by Y (a, z)
∑

n∈ a(n)z
−n−1 , where deg(z) = −2.

2. These need to satisfy



Sketch of the geometric construction of vertex algebras?

1. Joyce (17’) constructed vertex algebras on the homology V∗ = H∗+vdimC (MX ),
which requires three ingredients

1.1 The inclusion p
0−→ MX gives |0⟩ = 0∗(p).

1.2 There is an action of BGm (the classifying stack of line bundles) on MX which in
terms of families can be rephrased as tensoring the universal sheaf G on X × MX by
line bundles L on MX . Thus we get an action

Φ∗ : CJtK ⊠ H∗(MX ) → H∗(MX )

with T (−) = Φ∗(t ⊠ (−)).
1.3 Finally, the global RHomMX×MX

(G1,2,G1,3) = Θ is the last piece necessary to write

down Y (v , z), where (−)i,j denote pullbacks to the i, j-terms in X × MX × MX .

2. The quotient ofMX by BGm exists in some setting and is denoted byMrig

X . As
one would expect, there is roughly the correspondence

K∗ = V∗+2/TV∗ = H∗+vdimC (M
rig

X ) .

3. Now there are two roles that K∗ plays:

3.1 There might not exist a map ι : Mσ
α → MX , but there is ι′ : Mσ

α → M
rig

X giving

classes ι′∗[M
σ
α ]vir ∈ K0.

3.2 K∗ has the structure of a Lie algebra given by

[v ,w ] = v0w , ∀v ,w ∈ V∗ .



Conformal element
1. A conformal element ω ∈ V∗ is required to give a field Y (ω, z) =

∑
k∈Z Lkz

−k−2

with [
Ln, Lm

]
= (n −m)Lm+n +

n3 − n

12
δn+m,0 · C ,

2. The vertex algebra structure on V∗ can be described (see Gross(19’) +
BML(22’)) as a tensor product of its bosonic lattice part V+

∗ and fermionic
lattice part V−

∗ related to whether tvk generator satisfies v ∈ H±(X ).

3. After choosing an isotropic subspace decomposition I ⊕ Ī = H−(X ), there exist
natural conformal elements

ω+ ∈ V+
∗ , ω− ∈ V−

∗ , ω = ω+ + ω−

4. After introducing a new natural basis tv,Hk by

chHk (v) ∩ (−) =
∑
w∈B

∫
X
v · w

∂

∂tw,H
k

,

it takes the natural looking form

ω =
1

2

∑
v∈B

tv,Hk t v̂,Hk

with v̂ ∈ B̂ denoting the dual basis with respect to the supersymmetrization of
the following holomorphic pairing2

χH(v ,w) = (−1)p
∫
X
v · w · td(X ) , v ∈ Hp,q(X ) .

2Here one needs to be careful about non-degeneracy of the pairing, which we do not necessarily have. This can
be fixed by working with pairs of perfect complexes instead.



Primary states

1. Borcherds also gave a definition of primary states v ∈ P ⊂ V2 as satisfying the
equations Lkv = δk,0v and showed that they form a Lie subalgebra P̌ ⊂ KH

0 (here
H denotes a shifted grading on K like above).

2. We show that there is an operator

[−, ω] =
∑
n≥−1

(−1)n

(n + 1)!
T n+1 ◦ Ln : KH

0 → VH
2

such that for lattice vertex algebras and their state v being primary is equivalent
to the condition

[v̄ , ω] = 0 .

3. More importantly, there is now a map

[−,−] : K∗ × V∗ → V∗ , P̌ × P → P ,

which relates to whether the moduli spaces admit a lift ι : Mσ
α →MX or not.



Main Theorem

Theorem
If ι′ admits a lift ι : Mσ

α →MX , the condition that [Mσ
α ]

vir satisfies Virasoro
constraints is equivalent to ι′∗[M

σ
α ]

vir ∈ K0 being a primary state with respect to the ω
given above. I.e. ι′∗[M

σ
α ]

vir ∈ P̌. In all other cases, we define Virasoro constraints by
the virtual fundamental class being primary.

1. Since the wall-crossing formulae often take the form

[Mσ′
α ]vir =

∑
α⊢α

U(α, σ, σ′)
[
[Mσ

α1
]in,

[
[Mσ

α2
]in, . . . ,

[
[Mσ

αl
]in, [Mσ

α0
]vir

]
. . .

]]
with Mσ′

α ,Mσ
α0

admitting lifts toMX and [Mσ
α1

]in being homology classes

essentially defined to satisfy the wall-crossing formulae3, we see that Virasoro
constraints are preserved by wall-crossing. I.e. if we know them for classes on the

RHS, we know them for Mσ′
α .

2. This allows us to prove them in multiple cases.

3and satisfying all the necessary comtatibilities and uniequeness.



Rank reduction

Theorem (B.–Moreira–Lim(22’))
Let X be a curve or a surface with H1(S) = H2,0(S) = 0, then [MH

α ]in satisfy Virasoro
constraints whenever rk(α) > 0.

1. This proves the Conjecture of van Bree (21’).

Conjecture (B.–Moreira–Lim + idea of the proof)
The classes [MH

α ]in for a surface satisfying the above conditions satisfy Virasoro
constraints for any α.
2. The proof goes by induction on rank (in a suitable sense) starting

2.1 from rank 1 case for a surface S, which is [Hilbn(S)] proved by Moreira (21’)

2.2 from rank 0 case, which is [Mnp ]
in with an almost trivial computation.

3. In each inductive step, we have the formula

[Pα]
vir =

∑
α⊢α

U(α)
[
[Mα1 ]

in,
[
[Mα2 ]

in, . . . ,
[
[Mαl ]

in, [Pα0 ]
vir
]
. . .

]]
for rk(α) > rk(αi ) and [Mαi ]

in, [Pα0 ]
vir Virasoro constraints already known. I am

neglecting to write H here repeatedly to improve the presentation.
4. Define Π : PX →MX the projection from the stack of pairs on X to sheaves and

set
ΩH

α = Π∗
(
[Pα]

vir ∩ crk(TPX /MX
)
)

then Virasoro constraints are compatible with this operation and

ΩH
α = [Mα]

in +
∑
α⊢α

U′(α)
[
[Mα1 ]

in,
[
[Mα2 ]

in, . . . ,
[
[Mαl ]

in, [Mα0 ]
in] . . .

]]
.

with rk(α) > rk(αi ). Reorganizing this proves the induction step.



Future

1. Get rid of the condition on S .

2. Quivers.

3. Calabi–Yau fourfolds.

4. Fano 3-folds?

5. Equivariant Virasoro constraints.


