
Concrete Abstract Computability Theory

Jetze Zoethout

Mathematical Institute talk
10 May 2022

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 1 / 28

Table of Contents

1 Computability Theory

2 Scott’s Graph Model

3 Van Oosten Model

4 Morphisms

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 2 / 28

Table of Contents

1 Computability Theory

2 Scott’s Graph Model

3 Van Oosten Model

4 Morphisms

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 3 / 28

Computable functions

Computable partial functions N ⇀ N.

Need a notion of algorithm:

• imperative: Turing machines, register machines, . . . , Python;

• declarative: recursive functions, λ-calculus, . . . , Haskell.

Two important observations:

• all these models yield the same notion of computable function N ⇀ N;
• the number of computable functions is countable.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 4 / 28

Computable functions

Computable partial functions N ⇀ N.

Need a notion of algorithm:

• imperative: Turing machines, register machines, . . . , Python;

• declarative: recursive functions, λ-calculus, . . . , Haskell.

Two important observations:

• all these models yield the same notion of computable function N ⇀ N;
• the number of computable functions is countable.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 4 / 28

Computable functions

Computable partial functions N ⇀ N.

Need a notion of algorithm:

• imperative: Turing machines, register machines, . . . , Python;

• declarative: recursive functions, λ-calculus, . . . , Haskell.

Two important observations:

• all these models yield the same notion of computable function N ⇀ N;
• the number of computable functions is countable.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 4 / 28

Leveling the playing field

Write φn for the computable partial function N ⇀ N given by the n-th
algorithm (coding).

Example

There exists an n ∈ N such that φn(m) = m2.

If your coding is reasonable, φn(m) is computable in terms of n and m.

Application function

We define a partial function N× N ⇀ N by:

n ·m ≃ φn(m).

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 5 / 28

Leveling the playing field

Write φn for the computable partial function N ⇀ N given by the n-th
algorithm (coding).

Example

There exists an n ∈ N such that φn(m) = m2.

If your coding is reasonable, φn(m) is computable in terms of n and m.

Application function

We define a partial function N× N ⇀ N by:

n ·m ≃ φn(m).

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 5 / 28

Leveling the playing field

Write φn for the computable partial function N ⇀ N given by the n-th
algorithm (coding).

Example

There exists an n ∈ N such that φn(m) = m2.

If your coding is reasonable, φn(m) is computable in terms of n and m.

Application function

We define a partial function N× N ⇀ N by:

n ·m ≃ φn(m).

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 5 / 28

Leveling the playing field

Write φn for the computable partial function N ⇀ N given by the n-th
algorithm (coding).

Example

There exists an n ∈ N such that φn(m) = m2.

If your coding is reasonable, φn(m) is computable in terms of n and m.

Application function

We define a partial function N× N ⇀ N by:

n ·m ≃ φn(m).

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 5 / 28

Currying

What about functions with multiple arguments (e.g., addition)?

Example

There exists an n ∈ N such that (n ·m) ·m′ = m +m′.
Here φn is a function that, given m, computes a code for an algorithm for
the function x 7→ m + x .

In general: a function f : Nk ⇀ N is computable iff there exists an n ∈ N
such that

(· · · ((n ·m1) ·m2) · · ·) ·mk ≃ f (m1, . . . ,mk).

Write LHS as: nm1m2 · · ·mk .

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 6 / 28

Currying

What about functions with multiple arguments (e.g., addition)?

Example

There exists an n ∈ N such that (n ·m) ·m′ = m +m′.
Here φn is a function that, given m, computes a code for an algorithm for
the function x 7→ m + x .

In general: a function f : Nk ⇀ N is computable iff there exists an n ∈ N
such that

(· · · ((n ·m1) ·m2) · · ·) ·mk ≃ f (m1, . . . ,mk).

Write LHS as: nm1m2 · · ·mk .

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 6 / 28

Currying

What about functions with multiple arguments (e.g., addition)?

Example

There exists an n ∈ N such that (n ·m) ·m′ = m +m′.
Here φn is a function that, given m, computes a code for an algorithm for
the function x 7→ m + x .

In general: a function f : Nk ⇀ N is computable iff there exists an n ∈ N
such that

(· · · ((n ·m1) ·m2) · · ·) ·mk ≃ f (m1, . . . ,mk).

Write LHS as: nm1m2 · · ·mk .

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 6 / 28

Currying

What about functions with multiple arguments (e.g., addition)?

Example

There exists an n ∈ N such that (n ·m) ·m′ = m +m′.
Here φn is a function that, given m, computes a code for an algorithm for
the function x 7→ m + x .

In general: a function f : Nk ⇀ N is computable iff there exists an n ∈ N
such that

(· · · ((n ·m1) ·m2) · · ·) ·mk ≃ f (m1, . . . ,mk).

Write LHS as: nm1m2 · · ·mk .

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 6 / 28

Combinatory completeness

A term is an expression built from variables x1, x2, . . . and application.

Theorem

For every term t(x1, . . . , xk), there exists an n ∈ N such that

nm1 · · ·mk ≃ t(m1, . . . ,mk).

A partial combinatory algebra (PCA) is a set A equipped with an
application function A× A ⇀ A that has this property.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 7 / 28

Combinatory completeness

A term is an expression built from variables x1, x2, . . . and application.

Theorem

For every term t(x1, . . . , xk), there exists an n ∈ N such that

nm1 · · ·mk ≃ t(m1, . . . ,mk).

A partial combinatory algebra (PCA) is a set A equipped with an
application function A× A ⇀ A that has this property.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 7 / 28

Combinatory completeness

A term is an expression built from variables x1, x2, . . . and application.

Theorem

For every term t(x1, . . . , xk), there exists an n ∈ N such that

nm1 · · ·mk ≃ t(m1, . . . ,mk).

A partial combinatory algebra (PCA) is a set A equipped with an
application function A× A ⇀ A that has this property.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 7 / 28

Table of Contents

1 Computability Theory

2 Scott’s Graph Model

3 Van Oosten Model

4 Morphisms

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 8 / 28

The Scott topology

The underlying set of Scott’s graph model is the powerset of the natural
numbers: Pω.

The Scott topology

The basic opens of the Scott topology on Pω are:

Up = {A ⊆ N | p ⊆ A}

where p ⊆ N is finite.

Under Pω ∼= {0, 1}N, this is the product topology, where

O({0, 1}) = {∅, {1}, {0, 1}}.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 9 / 28

The Scott topology

The underlying set of Scott’s graph model is the powerset of the natural
numbers: Pω.

The Scott topology

The basic opens of the Scott topology on Pω are:

Up = {A ⊆ N | p ⊆ A}

where p ⊆ N is finite.

Under Pω ∼= {0, 1}N, this is the product topology, where

O({0, 1}) = {∅, {1}, {0, 1}}.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 9 / 28

The Scott topology

The underlying set of Scott’s graph model is the powerset of the natural
numbers: Pω.

The Scott topology

The basic opens of the Scott topology on Pω are:

Up = {A ⊆ N | p ⊆ A}

where p ⊆ N is finite.

Under Pω ∼= {0, 1}N, this is the product topology, where

O({0, 1}) = {∅, {1}, {0, 1}}.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 9 / 28

Scott-continuous functions

Observation

A function F : Pω → Pω is Scott-continuous iff

F (B) =
⋃

p⊆B finite

F (p),

for all B ⊆ N.

In particular:

• a Scott-continuous function is order-preserving;

• there are |Pω| Scott-continuous functions.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 10 / 28

Scott-continuous functions

Observation

A function F : Pω → Pω is Scott-continuous iff

F (B) =
⋃

p⊆B finite

F (p),

for all B ⊆ N.

In particular:

• a Scott-continuous function is order-preserving;

• there are |Pω| Scott-continuous functions.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 10 / 28

Coding continuous functions I

A Scott-continuous function F is determined by the set of all pairs (p, n),
where p ⊆ N finite and n ∈ F (p).

Coding of pairs

Define the bijection N× N → N, (m, n) 7→ ⟨m, n⟩ by:

⟨m, n⟩ = 1
2(m + n)(m + n + 1) + n.

Coding of finite sets

Define the bijection N → PfinN, n 7→ en by:

en = p iff n =
∑
i∈p

2i .

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 11 / 28

Coding continuous functions I

A Scott-continuous function F is determined by the set of all pairs (p, n),
where p ⊆ N finite and n ∈ F (p).

Coding of pairs

Define the bijection N× N → N, (m, n) 7→ ⟨m, n⟩ by:

⟨m, n⟩ = 1
2(m + n)(m + n + 1) + n.

Coding of finite sets

Define the bijection N → PfinN, n 7→ en by:

en = p iff n =
∑
i∈p

2i .

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 11 / 28

Coding continuous functions I

A Scott-continuous function F is determined by the set of all pairs (p, n),
where p ⊆ N finite and n ∈ F (p).

Coding of pairs

Define the bijection N× N → N, (m, n) 7→ ⟨m, n⟩ by:

⟨m, n⟩ = 1
2(m + n)(m + n + 1) + n.

Coding of finite sets

Define the bijection N → PfinN, n 7→ en by:

en = p iff n =
∑
i∈p

2i .

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 11 / 28

Coding continuous functions II

Coding

For a Scott-continuous function F : Pω → Pω, define

code(F) = {⟨m, n⟩ | n ∈ F (em)}.

Decoding

For A,B ⊆ N, define:

A · B = {n ∈ N | ∃m ∈ N(⟨m, n⟩ ∈ A and em ⊆ B)}.

• If F is Scott-continuous, then code(F) · B = F (B);

• The function Pω × Pω → Pω, (A,B) 7→ A · B is itself
Scott-continuous.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 12 / 28

Coding continuous functions II

Coding

For a Scott-continuous function F : Pω → Pω, define

code(F) = {⟨m, n⟩ | n ∈ F (em)}.

Decoding

For A,B ⊆ N, define:

A · B = {n ∈ N | ∃m ∈ N(⟨m, n⟩ ∈ A and em ⊆ B)}.

• If F is Scott-continuous, then code(F) · B = F (B);

• The function Pω × Pω → Pω, (A,B) 7→ A · B is itself
Scott-continuous.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 12 / 28

Coding continuous functions II

Coding

For a Scott-continuous function F : Pω → Pω, define

code(F) = {⟨m, n⟩ | n ∈ F (em)}.

Decoding

For A,B ⊆ N, define:

A · B = {n ∈ N | ∃m ∈ N(⟨m, n⟩ ∈ A and em ⊆ B)}.

• If F is Scott-continuous, then code(F) · B = F (B);

• The function Pω × Pω → Pω, (A,B) 7→ A · B is itself
Scott-continuous.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 12 / 28

Combinatory completeness

Let t(x1, . . . , xn) be a term.

Then the function (Pω)n → Pω, (B1, . . . ,Bn) 7→ t(B1, . . . ,Bn) is
Scott-continuous.

By repeatedly applying code(−), we obtain A ⊆ N such that:

AB1 · · ·Bn = t(B1, . . . ,Bn)

for all B1, . . . ,Bn ⊆ N.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 13 / 28

Combinatory completeness

Let t(x1, . . . , xn) be a term.

Then the function (Pω)n → Pω, (B1, . . . ,Bn) 7→ t(B1, . . . ,Bn) is
Scott-continuous.

By repeatedly applying code(−), we obtain A ⊆ N such that:

AB1 · · ·Bn = t(B1, . . . ,Bn)

for all B1, . . . ,Bn ⊆ N.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 13 / 28

Combinatory completeness

Let t(x1, . . . , xn) be a term.

Then the function (Pω)n → Pω, (B1, . . . ,Bn) 7→ t(B1, . . . ,Bn) is
Scott-continuous.

By repeatedly applying code(−), we obtain A ⊆ N such that:

AB1 · · ·Bn = t(B1, . . . ,Bn)

for all B1, . . . ,Bn ⊆ N.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 13 / 28

Examples of (non-)continuous functions

Example

The following functions are Scott-continuous (‘computable’):

• (A,B) 7→ A ∪ B;

• (A,B) 7→ A ∩ B;

• A 7→ the closure of A under finite sums.

Non-example

The function A 7→ N− A is not Scott-continuous.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 14 / 28

Examples of (non-)continuous functions

Example

The following functions are Scott-continuous (‘computable’):

• (A,B) 7→ A ∪ B;

• (A,B) 7→ A ∩ B;

• A 7→ the closure of A under finite sums.

Non-example

The function A 7→ N− A is not Scott-continuous.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 14 / 28

Table of Contents

1 Computability Theory

2 Scott’s Graph Model

3 Van Oosten Model

4 Morphisms

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 15 / 28

Oracle functions

The underlying set of the Van Oosten model is the set B of all partial
functions N ⇀ N.

We consider functions F : B → B where the input acts as an oracle, i.e., a
resource that may be consulted finitely many times.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 16 / 28

Oracle functions

The underlying set of the Van Oosten model is the set B of all partial
functions N ⇀ N.

We consider functions F : B → B where the input acts as an oracle, i.e., a
resource that may be consulted finitely many times.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 16 / 28

Example of an oracle function

Example

The function F : B → B is defined as follows. If β ∈ B and n ∈ N, we
define x0, x1, . . . , xn ∈ N by:

x0 = n, xi+1 ≃ xi + β(xi),

and we set F (β)(n) ≃ xn.

• F (β)(0) = 0

• F (β)(1) ≃ 1 + β(1)

• F (β)(2) ≃ 2 + β(2) + β(2 + β(2))

• F (β)(3) ≃ 3 + β(3) + β(3 + β(3)) + β(3 + β(3) + β(3 + β(3)))

• . . .

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 17 / 28

Example of an oracle function

Example

The function F : B → B is defined as follows. If β ∈ B and n ∈ N, we
define x0, x1, . . . , xn ∈ N by:

x0 = n, xi+1 ≃ xi + β(xi),

and we set F (β)(n) ≃ xn.

• F (β)(0) = 0

• F (β)(1) ≃ 1 + β(1)

• F (β)(2) ≃ 2 + β(2) + β(2 + β(2))

• F (β)(3) ≃ 3 + β(3) + β(3 + β(3)) + β(3 + β(3) + β(3 + β(3)))

• . . .

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 17 / 28

Tree representation

IN?

0! 1? 2? 3?

1! 2! 2? 3? 3? 4?

2! 3! 3! 4! 3? 4? 4? 5?

3! 4! 4! 5! 5! 6! 6! 7!

0 1 2 3

0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 18 / 28

Coding oracle computation I

We can describe F by the function that maps tree positions to either
queries or final outcomes.

Coding of queries or outcomes

• we represent the query
q?

by 2q + 1;

• we represent the outcome
m!

by 2m.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 19 / 28

Coding oracle computation I

We can describe F by the function that maps tree positions to either
queries or final outcomes.

Coding of queries or outcomes

• we represent the query
q?

by 2q + 1;

• we represent the outcome
m!

by 2m.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 19 / 28

Coding oracle computation II

Tree positions are really just finite sequences, telling us how we got there.

Coding of finite sequences

Define the injective function N∗ → N, (a1, a2, . . . , ak) 7→ [a1, a2, . . . , ak] by:

[a1, a2, . . . , ak] =
k∏

i=1

pai+1
i = 2a1+13a2+1 · · · pak+1

k ,

where pi is the i th prime number.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 20 / 28

Coding oracle computation II

Tree positions are really just finite sequences, telling us how we got there.

Coding of finite sequences

Define the injective function N∗ → N, (a1, a2, . . . , ak) 7→ [a1, a2, . . . , ak] by:

[a1, a2, . . . , ak] =
k∏

i=1

pai+1
i = 2a1+13a2+1 · · · pak+1

k ,

where pi is the i th prime number.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 20 / 28

Coding oracle computation III

For α, β ∈ B, we define α · β ∈ B as follows.

We say that (α · β)(n) = m iff there exist u0, . . . , uk−1 ∈ N such that:

• there is q0 ∈ N such that α([n]) = 2q0 + 1 and β(q0) = u0;

• there is q1 ∈ N such that α([n, u0]) = 2q1 + 1 and β(q1) = u1;

• there is q2 ∈ N such that α([n, u0, u1]) = 2q2 + 1 and β(q2) = u2;

• · · ·
• there is qk−1 ∈ N such that α([n, u0, u1, . . . , uk−2]) = 2qk−1 + 1 and

β(qk−1) = uk−1;

• α([n, u0, u1, . . . , uk−1]) = 2m.

This makes B into a partial combinatory algebra.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 21 / 28

Coding oracle computation III

For α, β ∈ B, we define α · β ∈ B as follows.

We say that (α · β)(n) = m iff there exist u0, . . . , uk−1 ∈ N such that:

• there is q0 ∈ N such that α([n]) = 2q0 + 1 and β(q0) = u0;

• there is q1 ∈ N such that α([n, u0]) = 2q1 + 1 and β(q1) = u1;

• there is q2 ∈ N such that α([n, u0, u1]) = 2q2 + 1 and β(q2) = u2;

• · · ·
• there is qk−1 ∈ N such that α([n, u0, u1, . . . , uk−2]) = 2qk−1 + 1 and

β(qk−1) = uk−1;

• α([n, u0, u1, . . . , uk−1]) = 2m.

This makes B into a partial combinatory algebra.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 21 / 28

Coding oracle computation III

For α, β ∈ B, we define α · β ∈ B as follows.

We say that (α · β)(n) = m iff there exist u0, . . . , uk−1 ∈ N such that:

• there is q0 ∈ N such that α([n]) = 2q0 + 1 and β(q0) = u0;

• there is q1 ∈ N such that α([n, u0]) = 2q1 + 1 and β(q1) = u1;

• there is q2 ∈ N such that α([n, u0, u1]) = 2q2 + 1 and β(q2) = u2;

• · · ·
• there is qk−1 ∈ N such that α([n, u0, u1, . . . , uk−2]) = 2qk−1 + 1 and

β(qk−1) = uk−1;

• α([n, u0, u1, . . . , uk−1]) = 2m.

This makes B into a partial combinatory algebra.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 21 / 28

Coding oracle computation III

For α, β ∈ B, we define α · β ∈ B as follows.

We say that (α · β)(n) = m iff there exist u0, . . . , uk−1 ∈ N such that:

• there is q0 ∈ N such that α([n]) = 2q0 + 1 and β(q0) = u0;

• there is q1 ∈ N such that α([n, u0]) = 2q1 + 1 and β(q1) = u1;

• there is q2 ∈ N such that α([n, u0, u1]) = 2q2 + 1 and β(q2) = u2;

• · · ·
• there is qk−1 ∈ N such that α([n, u0, u1, . . . , uk−2]) = 2qk−1 + 1 and

β(qk−1) = uk−1;

• α([n, u0, u1, . . . , uk−1]) = 2m.

This makes B into a partial combinatory algebra.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 21 / 28

Coding oracle computation III

For α, β ∈ B, we define α · β ∈ B as follows.

We say that (α · β)(n) = m iff there exist u0, . . . , uk−1 ∈ N such that:

• there is q0 ∈ N such that α([n]) = 2q0 + 1 and β(q0) = u0;

• there is q1 ∈ N such that α([n, u0]) = 2q1 + 1 and β(q1) = u1;

• there is q2 ∈ N such that α([n, u0, u1]) = 2q2 + 1 and β(q2) = u2;

• · · ·
• there is qk−1 ∈ N such that α([n, u0, u1, . . . , uk−2]) = 2qk−1 + 1 and

β(qk−1) = uk−1;

• α([n, u0, u1, . . . , uk−1]) = 2m.

This makes B into a partial combinatory algebra.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 21 / 28

Coding oracle computation III

For α, β ∈ B, we define α · β ∈ B as follows.

We say that (α · β)(n) = m iff there exist u0, . . . , uk−1 ∈ N such that:

• there is q0 ∈ N such that α([n]) = 2q0 + 1 and β(q0) = u0;

• there is q1 ∈ N such that α([n, u0]) = 2q1 + 1 and β(q1) = u1;

• there is q2 ∈ N such that α([n, u0, u1]) = 2q2 + 1 and β(q2) = u2;

• · · ·
• there is qk−1 ∈ N such that α([n, u0, u1, . . . , uk−2]) = 2qk−1 + 1 and

β(qk−1) = uk−1;

• α([n, u0, u1, . . . , uk−1]) = 2m.

This makes B into a partial combinatory algebra.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 21 / 28

Coding oracle computation III

For α, β ∈ B, we define α · β ∈ B as follows.

We say that (α · β)(n) = m iff there exist u0, . . . , uk−1 ∈ N such that:

• there is q0 ∈ N such that α([n]) = 2q0 + 1 and β(q0) = u0;

• there is q1 ∈ N such that α([n, u0]) = 2q1 + 1 and β(q1) = u1;

• there is q2 ∈ N such that α([n, u0, u1]) = 2q2 + 1 and β(q2) = u2;

• · · ·
• there is qk−1 ∈ N such that α([n, u0, u1, . . . , uk−2]) = 2qk−1 + 1 and

β(qk−1) = uk−1;

• α([n, u0, u1, . . . , uk−1]) = 2m.

This makes B into a partial combinatory algebra.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 21 / 28

Coding oracle computation III

For α, β ∈ B, we define α · β ∈ B as follows.

We say that (α · β)(n) = m iff there exist u0, . . . , uk−1 ∈ N such that:

• there is q0 ∈ N such that α([n]) = 2q0 + 1 and β(q0) = u0;

• there is q1 ∈ N such that α([n, u0]) = 2q1 + 1 and β(q1) = u1;

• there is q2 ∈ N such that α([n, u0, u1]) = 2q2 + 1 and β(q2) = u2;

• · · ·
• there is qk−1 ∈ N such that α([n, u0, u1, . . . , uk−2]) = 2qk−1 + 1 and

β(qk−1) = uk−1;

• α([n, u0, u1, . . . , uk−1]) = 2m.

This makes B into a partial combinatory algebra.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 21 / 28

Table of Contents

1 Computability Theory

2 Scott’s Graph Model

3 Van Oosten Model

4 Morphisms

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 22 / 28

Applicative morphisms

Applicative morphisms

Let A,B be PCAs. An applicative morphism A → B is a function
f : A → P̸=∅B for which there exists an r ∈ B such that:

if b ∈ f (a), b′ ∈ f (a′) and aa′ is defined, then rbb′ ∈ f (aa′).

Intuition: f is a simulation of A inside B, and the elements in f (a)
represent a.

Category of PCAs

This yields a category of PCAs, where:

• idA(a) = {a};

• if A
f→ B

g→ C , then gf (a) =
⋃

b∈f (a) g(b).

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 23 / 28

Applicative morphisms

Applicative morphisms

Let A,B be PCAs. An applicative morphism A → B is a function
f : A → P̸=∅B for which there exists an r ∈ B such that:

if b ∈ f (a), b′ ∈ f (a′) and aa′ is defined, then rbb′ ∈ f (aa′).

Intuition: f is a simulation of A inside B, and the elements in f (a)
represent a.

Category of PCAs

This yields a category of PCAs, where:

• idA(a) = {a};

• if A
f→ B

g→ C , then gf (a) =
⋃

b∈f (a) g(b).

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 23 / 28

Applicative morphisms

Applicative morphisms

Let A,B be PCAs. An applicative morphism A → B is a function
f : A → P̸=∅B for which there exists an r ∈ B such that:

if b ∈ f (a), b′ ∈ f (a′) and aa′ is defined, then rbb′ ∈ f (aa′).

Intuition: f is a simulation of A inside B, and the elements in f (a)
represent a.

Category of PCAs

This yields a category of PCAs, where:

• idA(a) = {a};

• if A
f→ B

g→ C , then gf (a) =
⋃

b∈f (a) g(b).

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 23 / 28

Example I

For α ∈ B, define graph(α) = {⟨n, α(n)⟩ | n ∈ domα} ⊆ N.

Example

There is an applicative morphism f : B → Pω defined by:

f (α) = {graph(α)}.

Task: find a Scott-continuous function F : Pω × Pω → Pω such that
F (graph(α), graph(β)) = graph(α · β).

Idea: the fact that (α · β)(n) = m depends on only finitely many values of
α and β.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 24 / 28

Example I

For α ∈ B, define graph(α) = {⟨n, α(n)⟩ | n ∈ domα} ⊆ N.

Example

There is an applicative morphism f : B → Pω defined by:

f (α) = {graph(α)}.

Task: find a Scott-continuous function F : Pω × Pω → Pω such that
F (graph(α), graph(β)) = graph(α · β).

Idea: the fact that (α · β)(n) = m depends on only finitely many values of
α and β.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 24 / 28

Example I

For α ∈ B, define graph(α) = {⟨n, α(n)⟩ | n ∈ domα} ⊆ N.

Example

There is an applicative morphism f : B → Pω defined by:

f (α) = {graph(α)}.

Task: find a Scott-continuous function F : Pω × Pω → Pω such that
F (graph(α), graph(β)) = graph(α · β).

Idea: the fact that (α · β)(n) = m depends on only finitely many values of
α and β.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 24 / 28

Example I

For α ∈ B, define graph(α) = {⟨n, α(n)⟩ | n ∈ domα} ⊆ N.

Example

There is an applicative morphism f : B → Pω defined by:

f (α) = {graph(α)}.

Task: find a Scott-continuous function F : Pω × Pω → Pω such that
F (graph(α), graph(β)) = graph(α · β).

Idea: the fact that (α · β)(n) = m depends on only finitely many values of
α and β.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 24 / 28

Example II

Example

There is an applicative morphism g : Pω → B given by:

g(A) = {α ∈ B | im(α) = A}.

Task: find ‘oracle function’ G : B × B → B such that
im(G (α, β)) = im(α) · im(β).

Idea: systematically inspect every element of im(α) and every finite subset
of im(β).

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 25 / 28

Example II

Example

There is an applicative morphism g : Pω → B given by:

g(A) = {α ∈ B | im(α) = A}.

Task: find ‘oracle function’ G : B × B → B such that
im(G (α, β)) = im(α) · im(β).

Idea: systematically inspect every element of im(α) and every finite subset
of im(β).

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 25 / 28

Example II

Example

There is an applicative morphism g : Pω → B given by:

g(A) = {α ∈ B | im(α) = A}.

Task: find ‘oracle function’ G : B × B → B such that
im(G (α, β)) = im(α) · im(β).

Idea: systematically inspect every element of im(α) and every finite subset
of im(β).

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 25 / 28

Comparing morphisms

Example (silly)

If A and B are PCAs, then we have the applicative morphism f : A → B
defined by f (a) = B.

Ordering on applicative morphisms

If f , f ′ : A → B are applicative morphisms, we say that f ≤ f ′ if there
exists an s ∈ B such that: if b ∈ f (a), then sb ∈ f ′(a).

(This makes the category of PCAs enriched over preorders.)

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 26 / 28

Comparing morphisms

Example (silly)

If A and B are PCAs, then we have the applicative morphism f : A → B
defined by f (a) = B.

Ordering on applicative morphisms

If f , f ′ : A → B are applicative morphisms, we say that f ≤ f ′ if there
exists an s ∈ B such that: if b ∈ f (a), then sb ∈ f ′(a).

(This makes the category of PCAs enriched over preorders.)

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 26 / 28

Comparing morphisms

Example (silly)

If A and B are PCAs, then we have the applicative morphism f : A → B
defined by f (a) = B.

Ordering on applicative morphisms

If f , f ′ : A → B are applicative morphisms, we say that f ≤ f ′ if there
exists an s ∈ B such that: if b ∈ f (a), then sb ∈ f ′(a).

(This makes the category of PCAs enriched over preorders.)

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 26 / 28

An adjunction

Example

We have idB ≤ gf .

Task: find ‘oracle function’ F : B → B such that im(F (β)) = graph(β), for
β ∈ B.

For example: F (β)(n) ≃ ⟨n, β(n)⟩.

Example

We have fg ≤ idPω.

Task: find Scott-continuous G : Pω → Pω such that
G (graph(α)) = im(α), for α ∈ B.

For example: G (B) = {n ∈ N | ∃m ∈ N(⟨m, n⟩ ∈ B)}.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 27 / 28

An adjunction

Example

We have idB ≤ gf .

Task: find ‘oracle function’ F : B → B such that im(F (β)) = graph(β), for
β ∈ B.

For example: F (β)(n) ≃ ⟨n, β(n)⟩.

Example

We have fg ≤ idPω.

Task: find Scott-continuous G : Pω → Pω such that
G (graph(α)) = im(α), for α ∈ B.

For example: G (B) = {n ∈ N | ∃m ∈ N(⟨m, n⟩ ∈ B)}.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 27 / 28

An adjunction

Example

We have idB ≤ gf .

Task: find ‘oracle function’ F : B → B such that im(F (β)) = graph(β), for
β ∈ B.

For example: F (β)(n) ≃ ⟨n, β(n)⟩.

Example

We have fg ≤ idPω.

Task: find Scott-continuous G : Pω → Pω such that
G (graph(α)) = im(α), for α ∈ B.

For example: G (B) = {n ∈ N | ∃m ∈ N(⟨m, n⟩ ∈ B)}.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 27 / 28

An adjunction

Example

We have idB ≤ gf .

Task: find ‘oracle function’ F : B → B such that im(F (β)) = graph(β), for
β ∈ B.

For example: F (β)(n) ≃ ⟨n, β(n)⟩.

Example

We have fg ≤ idPω.

Task: find Scott-continuous G : Pω → Pω such that
G (graph(α)) = im(α), for α ∈ B.

For example: G (B) = {n ∈ N | ∃m ∈ N(⟨m, n⟩ ∈ B)}.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 27 / 28

An adjunction

Example

We have idB ≤ gf .

Task: find ‘oracle function’ F : B → B such that im(F (β)) = graph(β), for
β ∈ B.

For example: F (β)(n) ≃ ⟨n, β(n)⟩.

Example

We have fg ≤ idPω.

Task: find Scott-continuous G : Pω → Pω such that
G (graph(α)) = im(α), for α ∈ B.

For example: G (B) = {n ∈ N | ∃m ∈ N(⟨m, n⟩ ∈ B)}.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 27 / 28

An adjunction

Example

We have idB ≤ gf .

Task: find ‘oracle function’ F : B → B such that im(F (β)) = graph(β), for
β ∈ B.

For example: F (β)(n) ≃ ⟨n, β(n)⟩.

Example

We have fg ≤ idPω.

Task: find Scott-continuous G : Pω → Pω such that
G (graph(α)) = im(α), for α ∈ B.

For example: G (B) = {n ∈ N | ∃m ∈ N(⟨m, n⟩ ∈ B)}.

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 27 / 28

Thank you!

Defense: Monday 30 May at 12:15

J. Zoethout, UU Concrete Abstract Computability Theory MI talk, 10 May 28 / 28

	Computability Theory
	Scott's Graph Model
	Van Oosten Model
	Morphisms

