Tame Geometry and a Finiteness Theorem for Variations of Hodge structures

Thomas W. Grimm

Utrecht University

Based on:

2112.06995 with Ben Bakker, Christian Schnell, Jacob Tsimerman

2112.08383 - Tameness Conjecture

Introduction and motivation

Corner stones of fundamental physics

Particle physics - Standard Model of Particle Physics

→ special quantum field theory

- matter particles and interactions (quarks, leptons, photon, gluons,...)

Corner stones of fundamental physics

Particle physics - Standard Model of Particle Physics

- matter particles and interactions (quarks, leptons, photon, gluons,...)

Cosmology and Gravity - Einstein's theory of General Relativity

- → classical theory using Riemannian geometry
 - curved spaces: manifolds
 - differential geometry

Quantum Gravity and its imprints

We are looking for fundamental theory unifying particle physics and General Relativity. → Theory of Quantum Gravity

Quantum Gravity and its imprints

We are looking for fundamental theory unifying particle physics and General Relativity. → Theory of Quantum Gravity

→ <u>String Theory</u> is a promising candidate for such a theory

Quantum Gravity and its imprints

We are looking for fundamental theory unifying particle physics and General Relativity. → Theory of Quantum Gravity

A very active research field: Swampland Program

Identify properties of four-dimensional models that make them compatible with quantum gravity.

Why does string theory yield many four-dimensional models? What has this to do with geometry?

Why does string theory yield many four-dimensional models? What has this to do with geometry?

⇒ String Theory formulated consistently in 10 space-time dimensions

Why does string theory yield many four-dimensional models? What has this to do with geometry?

⇒ String Theory formulated consistently in 10 space-time dimensions or 12 space-time dimensions (F-theory)

Why does string theory yield many four-dimensional models? What has this to do with geometry?

⇒ String Theory formulated consistently in 10 space-time dimensions or 12 space-time dimensions (F-theory)

Product Ansatz for the higher-dimensional space-time manifold:

our 4-dimensional space-time

Why does string theory yield many four-dimensional models? What has this to do with geometry?

⇒ String Theory formulated consistently in 10 space-time dimensions or 12 space-time dimensions (F-theory)

Product Ansatz for the higher-dimensional space-time manifold:

 $S \times Y$

our 4-dimensional space-time

6 or 8-dimensional compact manifold

→ many choices

Why does string theory yield many four-dimensional models? What has this to do with geometry?

⇒ String Theory formulated consistently in 10 space-time dimensions or 12 space-time dimensions (F-theory)

Product Ansatz for the higher-dimensional space-time manifold:

6 or 8-dimensional compact manifold

→ many choices

 \rightarrow Four-dimensional physics depends on choice of Y

Problem: deformations of Y can correspond to massless fields

→ fifths force → immediate contradiction with experiment

Solution: Flux Compactifications

review: [Graña] [Kachru, Douglas]

...[Becker,Becker '96],[Gukov,Vafa,Witten '99],[Giddings,Kachru, Polchiski '03],[TG,Louis '04]...

Solution: Flux Compactifications

review: [Graña] [Kachru, Douglas]

...[Becker, Becker '96], [Gukov, Vafa, Witten '99], [Giddings, Kachru, Polchiski '03], [TG, Louis '04]...

rough idea: introduce generalization of electromagnetic field, called G_4 on eight-dimensional manifold Y

Solution: Flux Compactifications

review: [Graña] [Kachru, Douglas]

...[Becker, Becker '96], [Gukov, Vafa, Witten '99], [Giddings, Kachru, Polchiski '03], [TG, Louis '04]...

rough idea: introduce generalization of electromagnetic field, called G_4 on eight-dimensional manifold Y

differential 4-form 'flux'

Solution: Flux Compactifications

review: [Graña] [Kachru, Douglas]

...[Becker, Becker '96], [Gukov, Vafa, Witten '99], [Giddings, Kachru, Polchiski '03], [TG, Louis '04]...

rough idea: introduce generalization of electromagnetic field, called G_4 on eight-dimensional manifold Y

differential 4-form 'flux'

equations of motion (Maxwell eq):

$$G_4 \in H^4(Y,\mathbb{R})$$

Solution: Flux Compactifications

review: [Graña] [Kachru, Douglas]

...[Becker, Becker '96], [Gukov, Vafa, Witten '99], [Giddings, Kachru, Polchiski '03], [TG, Louis '04]...

rough idea: introduce generalization of electromagnetic field, called G_4 on eight-dimensional manifold Y

differential 4-form 'flux'

equations of motion (Maxwell eq):

$$G_4 \in H^4(Y,\mathbb{R})$$

quantization:

$$G_4 \in H^4(Y,\mathbb{Z})$$

Solution: Flux Compactifications

review: [Graña] [Kachru, Douglas]

...[Becker, Becker '96], [Gukov, Vafa, Witten '99], [Giddings, Kachru, Polchiski '03], [TG, Louis '04]...

rough idea: introduce generalization of electromagnetic field, called G_4 on eight-dimensional manifold Y

Y is compact:

$$n_+ + n_- = 0$$

Solution: Flux Compactifications

review: [Graña] [Kachru, Douglas]

...[Becker, Becker '96], [Gukov, Vafa, Witten '99], [Giddings, Kachru, Polchiski '03], [TG, Louis '04]...

rough idea: introduce generalization of electromagnetic field, called G_4 on eight-dimensional manifold Y

Assume Y is compact:

$$\int_Y G_4 \wedge G_4 + n_+ + n_- = 0$$

Solution: Flux Compactifications

review: [Graña] [Kachru, Douglas]

...[Becker, Becker '96], [Gukov, Vafa, Witten '99], [Giddings, Kachru, Polchiski '03], [TG, Louis '04]...

rough idea: introduce generalization of electromagnetic field, called G_4 on eight-dimensional manifold Y

Assume Y is compact:

$$\int_Y G_4 \wedge G_4 = \ell$$

Solution to 12-dimensional theory (F-theory) of the form:
 solving Einstein's equations and other equations of motion

Solution to 12-dimensional theory (F-theory) of the form:
 solving Einstein's equations and other equations of motion

12d manifold: $\mathbb{S} imes Y$

Solution to 12-dimensional theory (F-theory) of the form:
 solving Einstein's equations and other equations of motion

12d manifold: $\mathbb{S} imes Y$

 $\mathbb{S} \times Y$ — Calabi-Yau manifold: Kähler manifold with

vanishing first Chern class

Solution to 12-dimensional theory (F-theory) of the form:
 solving Einstein's equations and other equations of motion

12d manifold: $\mathbb{S} \times Y$ — Calabi-Yau manifold: Kähler manifold with vanishing first Chern class

4-form flux: $G_4 \in H^4(Y,\mathbb{Z})$ $\int_Y G_4 \wedge G_4 = \ell$

- Solution to 12-dimensional theory (F-theory) of the form:
 solving Einstein's equations and other equations of motion
 - 12d manifold: $\mathbb{S} \times Y$ Calabi-Yau manifold: Kähler manifold with vanishing first Chern class
 - 4-form flux: $G_4 \in H^4(Y,\mathbb{Z})$ $\int_Y G_4 \wedge G_4 = \ell$

$$*G_4 = G_4$$
 $G_4 \wedge J = 0$ (in cohom.) 'self-dual flux'

Hodge star operator on Y Kähler form on Y

Solution to 12-dimensional theory (F-theory) of the form:
 solving Einstein's equations and other equations of motion

12d manifold:
$$\mathbb{S} \times Y$$
 — Calabi-Yau manifold: Kähler manifold with vanishing first Chern class

4-form flux:
$$G_4 \in H^4(Y,\mathbb{Z})$$
 $\int_Y G_4 \wedge G_4 = \ell$

$$*G_4 = G_4$$
 $G_4 \wedge J = 0$ (in cohom.) 'self-dual flux'

⇒ should be read as a condition on the choice of complex structure and Kähler structure ⇒ fix deformations

Concrete conjecture: The number of solutions in the described setting finite. Finitely many choices for G_4 .

starting with [Douglas '03] [Acharya, Douglas '06]

Concrete conjecture: The number of solutions in the described setting finite. Finitely many choices for G_4 .

starting with [Douglas '03] [Acharya, Douglas '06]

Answer: Yes, if one assumes finiteness of Calabi-Yau manifolds.

[Bakker,TG,Schnell,Tsimerman '21]

• Concrete conjecture: The number of solutions in the described setting finite. Finitely many choices for G_4 .

starting with [Douglas '03] [Acharya, Douglas '06]

Answer: Yes, if one assumes finiteness of Calabi-Yau manifolds.

[Bakker,TG,Schnell,Tsimerman '21]

• Much more general: Is the number of four-dimensional models arising from string theory finite?

much activity: [Vafa][Adams,DeWolfe,Taylor] [Kim,Shiu,Vafa] [Kim,Tarazi,Vafa] [Cvetic,Dierigl,Lin,Zang] [Dierigl,Heckman] [Font,Fraiman,Grana,Nunez,DeFreitas] [Hamada,Vafa] [Taylor etal] [Kim,Shiu,Vafa],[Lee,Weigand],[Tarazi,Vafa] [Hamada,Montero,Vafa,Valenzuela]

Concrete conjecture: The number of solutions in the described setting finite. Finitely many choices for G_4 .

starting with [Douglas '03] [Acharya, Douglas '06]

Answer: Yes, if one assumes finiteness of Calabi-Yau manifolds.

[Bakker,TG,Schnell,Tsimerman '21]

• Much more general: Is the number of four-dimensional models arising from string theory finite?

much activity: [Vafa][Adams,DeWolfe,Taylor] [Kim,Shiu,Vafa] [Kim,Tarazi,Vafa] [Cvetic,Dierigl,Lin,Zang] [Dierigl,Heckman] [Font,Fraiman,Grana,Nunez,DeFreitas] [Hamada,Vafa] [Taylor etal] [Kim,Shiu,Vafa],[Lee,Weigand],[Tarazi,Vafa] [Hamada,Montero,Vafa,Valenzuela]

Finiteness criterion seems to be a yes/no-criterion:

⇒ turn finiteness into a structural criterion: tameness conjecture

[TG '21]

Mathematical Formulation of the Problem

Calabi-Yau manifolds and moduli spaces

Calabi-Yau manifolds of complex dimension D:

Kähler +
$$c_1(TY) = 0 \implies$$
 Ricci flat Kähler metric with same Kähler class

Calabi-Yau manifolds and moduli spaces

Calabi-Yau manifolds of complex dimension D:

Kähler +
$$c_1(TY) = 0 \implies$$
 Ricci flat Kähler metric with same Kähler class

- deformation of complex structure of Y preserving Calabi-Yau condition:
 - \Rightarrow family Y_x varying over complex $h^{D-1,1}$ -dimensional unobstructed moduli space \mathcal{M} [Tian][Todorov]

Calabi-Yau manifolds and moduli spaces

Calabi-Yau manifolds of complex dimension D:

Kähler +
$$c_1(TY) = 0 \implies$$
 Ricci flat Kähler metric with same Kähler class

- deformation of complex structure of Y preserving Calabi-Yau condition:
 - \Rightarrow family Y_x varying over complex $h^{D-1,1}$ -dimensional unobstructed moduli space \mathcal{M} [Tian][Todorov]

Calabi-Yau manifolds of complex dimension D:

Kähler +
$$c_1(TY) = 0$$
 \Longrightarrow Ricci flat Kähler metric with same Kähler class

- deformation of complex structure of Y preserving Calabi-Yau condition:
 - \Rightarrow family Y_x varying over complex $h^{D-1,1}$ -dimensional unobstructed moduli space \mathcal{M} [Tian][Todorov]

Calabi-Yau manifolds of complex dimension D:

Kähler +
$$c_1(TY) = 0 \implies$$
 Ricci flat Kähler metric with same Kähler class

- deformation of complex structure of Y preserving Calabi-Yau condition:
 - \Rightarrow family Y_x varying over complex $h^{D-1,1}$ -dimensional unobstructed moduli space \mathcal{M} [Tian][Todorov]

Calabi-Yau manifolds of complex dimension D:

Kähler +
$$c_1(TY) = 0 \implies$$
 Ricci flat Kähler metric with same Kähler class

- deformation of complex structure of Y preserving Calabi-Yau condition:
 - \Rightarrow family Y_x varying over complex $h^{D-1,1}$ -dimensional unobstructed moduli space \mathcal{M} [Tian][Todorov]

- Calabi-Yau manifolds of complex dimension D:
 - Kähler + $c_1(TY) = 0 \implies$ Ricci flat Kähler metric with same Kähler class
- deformation of complex structure of Y preserving Calabi-Yau condition:
 - \Rightarrow family Y_x varying over complex $h^{D-1,1}$ -dimensional unobstructed moduli space \mathcal{M} [Tian][Todorov]
- $\rightarrow \mathcal{M}$ is quasi-projective [Viehweg], can be made smooth [Hironaka]

Hodge star * changes over complex structure moduli space M
 → complicated

- Hodge star * changes over complex structure moduli space M
 → complicated
- → How to find solution? \rightarrow (p,q)-forms in $H^{p,q}$ Hodge decomposition

$$H^4(Y,\mathbb{C}) = H^{4,0} \oplus H^{3,1} \oplus H^{2,2} \oplus H^{1,3} \oplus H^{0,4}$$

- → Hodge star * changes over complex structure moduli space M
 → complicated
- → How to find solution? \rightarrow (p,q)-forms in $H^{p,q}$ Hodge decomposition

$$H^4(Y,\mathbb{C})=H^{4,0}\oplus H^{3,1}\oplus H^{2,2}\oplus H^{1,3}\oplus H^{0,4}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 Hodge *= Weil Operator $C\colon +1 \quad -1 \quad +1 \quad -1 \quad +1$

- Hodge star * changes over complex structure moduli space M
 → complicated
- → How to find solution? \rightarrow (p,q)-forms in $H^{p,q}$ Hodge decomposition

$$H^4(Y,\mathbb{C})=H^{4,0}\oplus H^{3,1}\oplus H^{2,2}\oplus H^{1,3}\oplus H^{0,4}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 Hodge *= Weil Operator $C\colon +1 \qquad -1 \qquad +1 \qquad -1 \qquad +1$

Self-dual solutions satisfy: $G_4 \in H^4(Y,\mathbb{Z}) \cap (H^{4,0} \oplus H^{2,2} \oplus H^{0,4})$

- → Hodge star * changes over complex structure moduli space M
 → complicated
- → How to find solution? \rightarrow (p,q)-forms in $H^{p,q}$ Hodge decomposition

$$H^4(Y,\mathbb{C})=H^{4,0}\oplus H^{3,1}\oplus H^{2,2}\oplus H^{1,3}\oplus H^{0,4}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 Hodge *= Weil Operator $C\colon +1 \quad -1 \quad +1 \quad -1 \quad +1$

Self-dual solutions satisfy: $G_4 \in H^4(Y,\mathbb{Z}) \cap (H^{4,0} \oplus H^{2,2} \oplus H^{0,4})$

→ Study how $H_x^{p,q}$ changes over the moduli space \mathcal{M} ⇒ variations of Hodge structures

Define: polarization
$$Q(v, w) := \int_Y v \wedge w$$

$$Q(G_4, G_4) = \ell \implies Q(G_4, *G_4) = ||G_4||^2 = \ell$$

Simple case: consider a fixed (p,q)-decomposition (Hodge structure)

Define: polarization
$$Q(v,w):=\int_Y v\wedge w$$

$$Q(G_4,G_4)=\ell \ \Rightarrow \ Q(G_4,*G_4)=\|G_4\|^2=\ell$$

- Allow variation of Hodge structure $H_x^{p,q}, \ x \in \mathcal{M}$: very hard problem

Define: polarization
$$Q(v, w) := \int_Y v \wedge w$$

$$Q(G_4, G_4) = \ell \implies Q(G_4, *G_4) = ||G_4||^2 = \ell$$

- Allow variation of Hodge structure $H_x^{p,q}, \ x \in \mathcal{M}$: very hard problem
 - \rightarrow Weil operator (Hodge star) can degenerate on boundaries of $\mathcal M$

Define: polarization
$$Q(v, w) := \int_{Y} v \wedge w$$

$$Q(G_4, G_4) = \ell \implies Q(G_4, *G_4) = ||G_4||^2 = \ell$$

- Allow variation of Hodge structure $H^{p,q}_x, \ x \in \mathcal{M}$: very hard problem
 - \rightarrow Weil operator (Hodge star) can degenerate on boundaries of $\mathcal M$
 - \rightarrow key challenge to show: no infinite tails in the asymptotic regimes of ${\cal M}$

Define: polarization
$$Q(v,w):=\int_Y v\wedge w$$

$$Q(G_4,G_4)=\ell \ \Rightarrow \ Q(G_4,*G_4)=\|G_4\|^2=\ell$$

- Allow variation of Hodge structure $H_x^{p,q}, \ x \in \mathcal{M}$: very hard problem
 - \rightarrow Weil operator (Hodge star) can degenerate on boundaries of $\mathcal M$
 - \rightarrow key challenge to show: no infinite tails in the asymptotic regimes of ${\cal M}$
- Idea: use asymptotic Hodge theory: nilpotent orbit theorem [Schmid], sl(2)-orbit theorem [Schmid][Cattani, Kaplan, Schmid]

Define: polarization
$$Q(v,w):=\int_Y v\wedge w$$

$$Q(G_4,G_4)=\ell \ \Rightarrow \ Q(G_4,*G_4)=\|G_4\|^2=\ell$$

- Allow variation of Hodge structure $H^{p,q}_x, \ x \in \mathcal{M}$: very hard problem
 - \rightarrow Weil operator (Hodge star) can degenerate on boundaries of $\mathcal M$
 - ightharpoonup key challenge to show: no infinite tails in the asymptotic regimes of ${\cal M}$
- Idea: use asymptotic Hodge theory: nilpotent orbit theorem [Schmid], sl(2)-orbit theorem [Schmid][Cattani, Kaplan, Schmid]
 - ⇒ works well for one-parameter limits [Schnell] [TG] '20

Define: polarization
$$Q(v,w) := \int_Y v \wedge w$$

$$Q(G_4,G_4) = \ell \implies Q(G_4,*G_4) = \|G_4\|^2 = \ell$$

- Allow variation of Hodge structure $H^{p,q}_x, \ x \in \mathcal{M}$: very hard problem
 - \rightarrow Weil operator (Hodge star) can degenerate on boundaries of $\mathcal M$
 - \rightarrow key challenge to show: no infinite tails in the asymptotic regimes of ${\cal M}$
- Idea: use asymptotic Hodge theory: nilpotent orbit theorem [Schmid], sl(2)-orbit theorem [Schmid][Cattani, Kaplan, Schmid]
 - ⇒ using multi-variable Sl(2)-orbit theorem too involved

Theorems in Abstract Variations of Hodge Structures

→ X smooth complex algebraic variety (e.g. moduli space $X = \mathcal{M}$)

- → X smooth complex algebraic variety (e.g. moduli space $X = \mathcal{M}$)
- Hodge bundle: $p: E \to X$ with fibers $H_{\mathbb{C},x} = \bigoplus_{p+q=2d} H_x^{p,q}, \ x \in X$

- → X smooth complex algebraic variety (e.g. moduli space $X = \mathcal{M}$)
- Hodge bundle: $p: E \to X$ with fibers $H_{\mathbb{C},x} = \bigoplus_{p+q=2d} H_x^{p,q}, \ x \in X$

Theorem [Cattani, Deligne, Kaplan '95]: For integer $\ell > 0$, locus of integral Hodge classes

$$\left\{ (x,v) \in \mathbf{E} : v \in (H^{d,d} \cap H_{\mathbb{Z}})_x \text{ and } Q(v,v) = \ell \right\}$$

is algebraic, and the restriction of p to this set is proper with finite fibers.

- → X smooth complex algebraic variety (e.g. moduli space $X = \mathcal{M}$)
- Hodge bundle: $p: E \to X$ with fibers $H_{\mathbb{C},x} = \bigoplus_{p+q=2d} H_x^{p,q}, \ x \in X$

Theorem [Cattani, Deligne, Kaplan '95]: For integer $\ell > 0$, locus of integral Hodge classes

$$\left\{ (x,v) \in \mathbf{E} : v \in (H^{d,d} \cap H_{\mathbb{Z}})_x \text{ and } Q(v,v) = \ell \right\}$$

is algebraic, and the restriction of p to this set is proper with finite fibers.

ullet remarkable theorem which follows from the Hodge conjecture for Hodge structures associated to families of projective Kähler manifolds Y

- → X smooth complex algebraic variety (e.g. moduli space $X = \mathcal{M}$)
- Hodge bundle: $p: E \to X$ with fibers $H_{\mathbb{C},x} = \bigoplus_{p+q=2d} H_x^{p,q}, \ x \in X$

Theorem [Cattani, Deligne, Kaplan '95]: For integer $\ell > 0$, locus of integral Hodge classes

$$\left\{ (x,v) \in \mathbf{E} : v \in (H^{d,d} \cap H_{\mathbb{Z}})_x \text{ and } Q(v,v) = \ell \right\}$$

is algebraic, and the restriction of p to this set is proper with finite fibers.

• covers the finiteness of the special case: $G_4 \in H^4(Y_4, \mathbb{Z}) \cap H^{2,2}$ (supersymmetric fluxes)

- recall Weil operator C (e.g. Hodge star): $Cv=i^{p-q}v \qquad v\in H^{p,q}$

Theorem [Bakker,TG,Schnell,Tsimerman]: For integer $\ell > 0$, the locus of integral self-dual classes

$$\{(x,v) \in \mathbf{E} : v \in H_{\mathbb{Z},x} \text{ and } C_x v = v \text{ and } Q(v,v) = \ell \}$$

is $\mathbb{R}_{an,exp}$ -definable, closed real-analytic subspace of E and the restriction of p to this set is proper with finite fibers.

- recall Weil operator C (e.g. Hodge star): $Cv=i^{p-q}v \qquad v\in H^{p,q}$

Theorem [Bakker,TG,Schnell,Tsimerman]: For integer $\ell > 0$, the locus of integral self-dual classes

$$\left\{ (x,v) \in \mathbf{E} : v \in H_{\mathbb{Z},x} \text{ and } C_x v = v \text{ and } Q(v,v) = \ell \right\}$$

is $\mathbb{R}_{an,exp}$ -definable, closed real-analytic subspace of E and the restriction of p to this set is proper with finite fibers.

quantized flux $G_4 \in H^4(Y, \mathbb{Z})$

- recall Weil operator C (e.g. Hodge star): $Cv=i^{p-q}v \qquad v\in H^{p,q}$

Theorem [Bakker,TG,Schnell,Tsimerman]: For integer $\ell > 0$, the locus of integral self-dual classes

$$\left\{ (x,v) \in \mathbf{E} : v \in H_{\mathbb{Z},x} \text{ and } C_x v = v \text{ and } Q(v,v) = \ell \right\}$$

is $\mathbb{R}_{an,exp}$ -definable, closed real-analytic subspace of E and the restriction of p to this set is proper with finite fibers.

quantized flux
$$G_4 \in H^4(Y, \mathbb{Z})$$

$$*G_4 = G_4$$

- recall Weil operator C (e.g. Hodge star): $Cv = i^{p-q}v$ $v \in H^{p,q}$

$$v \in H^{p,q}$$

Theorem [Bakker,TG,Schnell,Tsimerman]: For integer $\ell > 0$, the locus of integral self-dual classes

$$\left\{ (x,v) \in \mathbf{E} : v \in H_{\mathbb{Z},x} \text{ and } C_x v = v \text{ and } Q(v,v) = \ell \right\}$$

is $\mathbb{R}_{an,exp}$ -definable, closed real-analytic subspace of E and the restriction of p to this set is proper with finite fibers.

quantized flux
$$G_4 \in H^4(Y, \mathbb{Z})$$

$$*G_4 = G_4$$

$$\int_Y G_4 \wedge G_4 = \ell$$

A brief introduction to tame geometry and o-minimal structure

- develop a mathematical framework for geometers (respect finiteness):
 - Grothendieck's dream of a tame topology [Esquisse d'un programme]
 - remove pathologies that can occur in 'ordinary topology'

- develop a mathematical framework for geometers (respect finiteness):
 - Grothendieck's dream of a tame topology [Esquisse d'un programme]
 - remove pathologies that can occur in 'ordinary topology'
- theory of o-minimal structures comes from model theory (logic)
 - → gives a generalization of real algebraic geometry
 - → provides a tame topology intro book [van den Dries]

lectures: Tsimerman (Nov. 2021 Princeton lectures)

- develop a mathematical framework for geometers (respect finiteness):
 - Grothendieck's dream of a tame topology [Esquisse d'un programme]
 - remove pathologies that can occur in 'ordinary topology'
- theory of o-minimal structures comes from model theory (logic)
 - → gives a generalization of real algebraic geometry
 - → provides a tame topology intro book [van den Dries]

lectures: Tsimerman (Nov. 2021 Princeton lectures)

- **Basic** idea: specify space of allowed (definable) sets $S_n \subset \mathbb{R}^n$ and allowed (definable) functions $f : \mathbb{R}^n \to \mathbb{R}^m$
 - → definable manifolds, definable bundles,... a whole tame geometry

- develop a mathematical framework for geometers (respect finiteness):
 - Grothendieck's dream of a tame topology [Esquisse d'un programme]
 - remove pathologies that can occur in 'ordinary topology'
- theory of o-minimal structures comes from model theory (logic)
 - → gives a generalization of real algebraic geometry
 - → provides a tame topology intro book [van den Dries]

lectures: Tsimerman (Nov. 2021 Princeton lectures)

- **Basic** idea: specify space of allowed (definable) sets $S_n \subset \mathbb{R}^n$ and allowed (definable) functions $f : \mathbb{R}^n \to \mathbb{R}^m$
 - → definable manifolds, definable bundles,... a whole tame geometry
- strong finiteness properties

 $extstyle ext{simplest situation:}$ finite number of subsets of $\mathbb R$

 $extstyle ext{simplest situation:}$ finite number of subsets of $\mathbb R$

- extremely hard to extend this to \mathbb{R}^n . Some intuitive requirements:
 - ightharpoonup projections to $\mathbb R$ should give the above sets

 $extstyle ext{simplest situation:}$ finite number of subsets of $\mathbb R$

- extremely hard to extend this to \mathbb{R}^n . Some intuitive requirements:
 - ightharpoonup projections to $\mathbb R$ should give the above sets
 - finite unions, intersections, and products should be allowed

- simplest situation: finite number of subsets of $\mathbb R$

- extremely hard to extend this to \mathbb{R}^n . Some intuitive requirements:
 - ightharpoonup projections to $\mathbb R$ should give the above sets
 - finite unions, intersections, and products should be allowed
 - extending algebraic geometry: sets defined by polynomials included (algebraic sets)

Tame Geometry

- Definition: An o-minimal structure S of sets $\{S_n\}_{n=0,1,..}$:
 - S_n are subsets of \mathbb{R}^n
 - S_n is closed under <u>finite</u> intersections, <u>finite</u> unions and complements
 - $\{S_n\}$ closed under <u>finite</u> Cartesian products & coordinate projections
 - S_n contain zero set of every polynomial in n variables
 - S_1 is the <u>finite</u> union of intervals and points tameness assumption

- Definition: An o-minimal structure S of sets $\{S_n\}_{n=0,1,..}$:
 - S_n are subsets of \mathbb{R}^n
 - S_n is closed under <u>finite</u> intersections, <u>finite</u> unions and complements
 - $\{S_n\}$ closed under <u>finite</u> Cartesian products & coordinate projections
 - S_n contain zero set of every polynomial in n variables
 - \cdot S_1 is the <u>finite</u> union of intervals and points tameness assumption
- S-definable functions among the S_n 's are those whose graph is part of the o-minimal structure S

- Definition: An o-minimal structure S of sets $\{S_n\}_{n=0,1,..}$:
 - S_n are subsets of \mathbb{R}^n
 - S_n is closed under <u>finite</u> intersections, <u>finite</u> unions and complements
 - $\{S_n\}$ closed under <u>finite</u> Cartesian products & coordinate projections
 - S_n contain zero set of every polynomial in n variables
 - \cdot S_1 is the <u>finite</u> union of intervals and points tameness assumption
- S-definable functions among the S_n 's are those whose graph is part of the o-minimal structure S

Example: polynomial function

- Definition: An o-minimal structure S of sets $\{S_n\}_{n=0,1,..}$:
 - S_n are subsets of \mathbb{R}^n
 - S_n is closed under <u>finite</u> intersections, <u>finite</u> unions and complements
 - $\{S_n\}$ closed under <u>finite</u> Cartesian products & coordinate projections
 - S_n contain zero set of every polynomial in n variables
 - \cdot S_1 is the <u>finite</u> union of intervals and points tameness assumption
- S-definable functions among the S_n 's are those whose graph is part of the o-minimal structure S
- S-definable manifold: finite definable atlas and transition functions are definable

Result (1): definable $f: \mathbb{R} \to \mathbb{R}$

split \mathbb{R} into finite number of intervals: f is either constant, or monotonic and continuous in each open interval

Result (1): definable $f: \mathbb{R} \to \mathbb{R}$

split \mathbb{R} into finite number of intervals: f is either constant, or monotonic and continuous in each open interval

- → differentiable apart from finitely many points
- → finitely many suprema and infima
- → tame tail to infinity

Result (1): definable $f: \mathbb{R} \to \mathbb{R}$

split \mathbb{R} into finite number of intervals: f is either constant, or monotonic and continuous in each open interval

Result (2): definable + holomorphic $f:\mathbb{C}\to\mathbb{C}$ \to algebraic

Result (1): definable $f: \mathbb{R} \to \mathbb{R}$

split \mathbb{R} into finite number of intervals: f is either constant, or monotonic and continuous in each open interval

Result (2): definable + holomorphic $f:\mathbb{C}\to\mathbb{C}$ \to algebraic

Note: complex exponential $e^z=e^{r+i\phi}:\mathbb{C}\to\mathbb{C}$ is not definable in any o-minimal structure

Result (1): definable $f: \mathbb{R} \to \mathbb{R}$

split \mathbb{R} into finite number of intervals: f is either constant, or monotonic and continuous in each open interval

Result (2): definable + holomorphic $f:\mathbb{C}\to\mathbb{C}$ \to algebraic

Note: complex exponential $e^z=e^{r+i\phi}:\mathbb{C}\to\mathbb{C}$ is not definable in any o-minimal structure $e^z=e^r(\cos(\phi)+i\sin(\phi))$

infinitely many zeros on $\mathbb R$

Result (1): definable $f: \mathbb{R} \to \mathbb{R}$

split \mathbb{R} into finite number of intervals: f is either constant, or monotonic and continuous in each open interval

Result (2): definable + holomorphic $f:\mathbb{C}\to\mathbb{C}$ \to algebraic

Note: complex exponential $e^z=e^{r+i\phi}:\mathbb{C}\to\mathbb{C}$ is not definable in any o-minimal structure

 \rightarrow restrict domain in ϕ , but e^r : does such an o-minimal structure exist

- there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate some of the sets → non-trivial

- there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate some of the sets → non-trivial

- Some important examples:
 - · structure generated by real polynomials: \mathbb{R}_{alg} $P(x_1,...,x_n)=0$

- there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate some of the sets → non-trivial

- Some important examples:
 - structure generated by real polynomials: \mathbb{R}_{alg} $P(x_1,...,x_n)=0$
 - · $\mathbb{R}_{\mathrm{alg}}$ plus restricted real analytic functions: \mathbb{R}_{an}

- there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate some of the sets → non-trivial

- Some important examples:
 - · structure generated by real polynomials: \mathbb{R}_{alg} $P(x_1,...,x_n)=0$
 - · \mathbb{R}_{alg} plus restricted real analytic functions: \mathbb{R}_{an}
 - · \mathbb{R}_{alg} plus exponential function: \mathbb{R}_{exp} $P(x_1,...,x_n,e^{x_1},...,e^{x_n})=0$ [Wilkie '96]

- there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate some of the sets → non-trivial

- Some important examples:
 - · structure generated by real polynomials: \mathbb{R}_{alg} $P(x_1,...,x_n)=0$
 - · $\mathbb{R}_{\mathrm{alg}}$ plus restricted real analytic functions: \mathbb{R}_{an}
 - Ralg plus exponential function: \mathbb{R}_{\exp} $P(x_1,...,x_n,e^{x_1},...,e^{x_n})=0$ [Wilkie '96]
 - · combination of \mathbb{R}_{an} and \mathbb{R}_{exp} : $\mathbb{R}_{an,exp}$ [van den Dries, Miller '94]

Some remarks on $\mathbb{R}_{an,exp}$

- To make e^z definable on $0 \le \phi \le c$ need already $\mathbb{R}_{\mathrm{an,exp}}$

Some remarks on $\mathbb{R}_{an,exp}$

- To make e^z definable on $0 \le \phi \le c$ need already $\mathbb{R}_{\mathrm{an,exp}}$
- $\mathbb{R}_{\mathrm{an,exp}}$ suffices for most geometric applications

Some remarks on $\mathbb{R}_{an,exp}$

- To make e^z definable on $0 \le \phi \le c$ need already $\mathbb{R}_{\mathrm{an,exp}}$
- $\mathbb{R}_{\mathrm{an,exp}}$ suffices for most geometric applications

- Functions not definable in $\mathbb{R}_{\mathrm{an,exp}}$

[van den Dries, Macintyre, Marker '97]

- · Gamma function: $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$ restricted to $(0, \infty)$
- Error function: $\int_0^x e^{-t^2} dt$
- · Zeta function: $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ restricted to $(1, \infty)$

There is much more to say:

 Higher-dimensional definable functions and sets well understood

There is much more to say:

Higher-dimensional definable functions

and sets well understood

· exists cell decomposition

There is much more to say:

Higher-dimensional definable functions

and sets well understood

· exists cell decomposition

- Definability can replace compactness in many famous theorems: e.g.
 - definable Chow [Peterzil, Starchenko '06]
 - · Pila-Wilkie theorem '04 (counting rational points in a definable set)

Some remarks on the proof of the finiteness theorem

Use definability results of seminal paper by [Bakker, Klingler, Tsimerman] '18

- Use definability results of seminal paper by [Bakker, Klingler, Tsimerman] '18
 - view C as a map: $C: X \to G/K$

G orthogonal group of $Q(\cdot, \cdot)$

K orthogonal group of $Q(\cdot, C_0 \cdot)$

- Use definability results of seminal paper by [Bakker, Klingler, Tsimerman] '18
 - view C as a map: $C:X\to G/K$ G orthogonal group of $Q(\cdot,\cdot)$ K orthogonal group of $Q(\cdot,C_0\cdot)$

Theorem [BKT]: The Weil operator map is definable in $\mathbb{R}_{an,exp}$.

Proof: uses crucially nilpotent orbit theorem.

- Use definability results of seminal paper by [Bakker, Klingler, Tsimerman] '18
 - · view C as a map: $C:X\to G/K$ G orthogonal group of $Q(\cdot,\cdot)$ K orthogonal group of $Q(\cdot,C_0\cdot)$

Theorem [BKT]: The Weil operator map is definable in $\mathbb{R}_{an,exp}$.

Proof: uses crucially nilpotent orbit theorem.

Theorem [BKT]: The Weil operator period map Φ is definable in $\mathbb{R}_{an,exp}$.

Step 2: Extension to Hodge bundle

Extend definability result to the Hodge bundle

Proposition: The morphism $\Phi_E: E \to \Gamma \backslash (G/K \times H_{\mathbb{C}})$

between complex vector bundles is definable in $\mathbb{R}_{an,exp}$

Proof: uses partly [Bakker, Mullane '22].

Step 2: Extension to Hodge bundle

Extend definability result to the Hodge bundle

Proposition: The morphism $\Phi_E: E \to \Gamma \setminus (G/K \times H_{\mathbb{C}})$

between complex vector bundles is definable in $\mathbb{R}_{an,exp}$

Proof: uses partly [Bakker, Mullane '22].

• Idea: show that locus of self-dual classes in $\Gamma \setminus (G/K \times H_{\mathbb{C}})$ is \mathbb{R}_{alg} -definable using lattice theory and definablity of maps between arithmetic quotients \rightarrow infer definability result for E

Step 3: Lattice reduction + single orbit

- Reduction of lattice $H_{\mathbb{Z}}$ into finitely many orbits

Theorem [e.g. Kneser]: The group Γ acts on set $\{v \in H_{\mathbb{Z}}: Q(v,v)=\ell\}$ with finitely many orbits.

string theory consistency conditions (linked to having gravity) leads to a finiteness reduction

Step 3: Lattice reduction + single orbit

- Reduction of lattice $H_{\mathbb{Z}}$ into finitely many orbits

Theorem [e.g. Kneser]: The group Γ acts on set $\{v \in H_{\mathbb{Z}}: Q(v,v)=\ell\}$ with finitely many orbits.

• Prove finiteness in a single orbit: $\Gamma a, \ a \in H_{\mathbb{Z}}$

Proposition: Assume $C_0a=a$ and define $C_g=gC_0g^{-1}$ then the set $\left\{\Gamma(gK,v)\in\Gamma\backslash(G/K\times H_{\mathbb C}):\ v\in\Gamma a,\ C_gv=v\right\}$ is definable in $\mathbb R_{\mathrm{alg}}$.

Step 3: Lattice reduction + single orbit

- Reduction of lattice $H_{\mathbb{Z}}$ into finitely many orbits

Theorem [e.g. Kneser]: The group Γ acts on set $\{v \in H_{\mathbb{Z}}: Q(v,v)=\ell\}$ with finitely many orbits.

• Prove finiteness in a single orbit: $\Gamma a, \ a \in H_{\mathbb{Z}}$

Proposition: Assume $C_0a=a$ and define $C_g=gC_0g^{-1}$ then the set $\left\{\Gamma(gK,v)\in\Gamma\backslash(G/K\times H_{\mathbb C}):\ v\in\Gamma a,\ C_gv=v\right\}$ is definable in $\mathbb R_{\mathrm{alg}}$.

Proof: some computations and definablity of $\Gamma_a \backslash G_a / K_a \to \Gamma \backslash G / K$ [BKT]

groups fixing a

A new conjecture

A new swampland conjecture

Tameness conjecture:

All effective theories valid below a fixed finite energy cut-off scale that can be consistently coupled to quantum gravity are labelled by a definable parameter space and must have scalar field spaces and coupling functions that are definable in an o-minimal structure.

Refined version:

The relevant o-minimal structure is $\mathbb{R}_{an,exp}$.

A new swampland conjecture

Tameness conjecture:

All effective theories valid below a fixed finite energy cut-off scale that can be consistently coupled to quantum gravity are labelled by a definable parameter space and must have scalar field spaces and coupling functions that are definable in an o-minimal structure.

- → Finiteness as a structural principle in physics:
 - "All consistent physical theories are tame "

 Swampland program addresses exciting questions at the interface of fundamental physics and mathematics

- Swampland program addresses exciting questions at the interface of fundamental physics and mathematics
- mathematical approach allows us to settle long-standing conjectures: finiteness theorem for number of self-dual flux solutions $\mathcal{M} \times (\text{flux lattice})$
 - \rightarrow proof that uses centrally $\mathbb{R}_{\mathrm{an,exp}}$ -definability

- Swampland program addresses exciting questions at the interface of fundamental physics and mathematics
- mathematical approach allows us to settle long-standing conjectures: finiteness theorem for number of self-dual flux solutions $\mathcal{M} \times$ (flux lattice) \rightarrow proof that uses centrally $\mathbb{R}_{\mathrm{an,exp}}$ -definability
- tame geometry and o-minimal structures appear to be useful in many string theory settings → tameness in physics → tameness conjecture

- Swampland program addresses exciting questions at the interface of fundamental physics and mathematics
- mathematical approach allows us to settle long-standing conjectures: finiteness theorem for number of self-dual flux solutions $\mathcal{M} \times$ (flux lattice) \rightarrow proof that uses centrally $\mathbb{R}_{\mathrm{an,exp}}$ -definability
- tame geometry and o-minimal structures appear to be useful in many string theory settings → tameness in physics → tameness conjecture
- How do other quantum gravity conjectures connect to tameness?
 [TG,Lanza,Li] in progress
- Evidence for tameness in quantum field theory?
 with Schlechter,... in progress

Thanks for listening!