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~ Particle physics - Standard Model of Particle Physics

— special quantum field theory

- matter particles and interactions
(quarks, leptons, photon, gluons,...)

~ Cosmology and Gravity - Einstein’s theory of General Relativity

— classical theory using
Riemannian geometry

- curved spaces: manifolds
- differential geometry
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Quantum Gravity and its imprints

We are looking for fundamental theory unifying particle physics and
General Relativity. — Theory of Quantum Gravity

A very active research field: Swampland Program

Quantum Gravity
String Theory

Identity properties of
four-dimensional models
that make them compatible
with quantum gravity.

models consistent with
Quantum Gravity
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String theory and higher dimensions

Why does string theory yield many four-dimensional models?
What has this to do with geometry?

= String Theory formulated consistently in 10 space-time dimensions
or 12 space-time dimensions (F-theory)

Product Ansatz for the higher-dimensional space-time manifold:

> < ¥
6 or 8-dimensional

our 4-dimensional compact manifold
space-time :
— many choices

— Four-dimensional physics depends on choice of Y



Solutions with background fields

Problem: deformations of Y can correspond to massless fields
— fifths force — immediate contradiction with experiment
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rough idea: introduce generalization of electromagnetic field, called G4
on eight-dimensional manifold Y /

differential 4-form “flux’

equations of motion (Maxwell eq):

G- R

quantization:

Ci=H b
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Best understood solutions

~ Solution to 12-dimensional theory (F-theory) of the form:

solving Einstein’s equations and other equations of motion

12d manifold: S X Y “ Calabi-Yau manifold:
Kahler manifold with

vanishing first Chern class
- 4-form flux; G4E [-[4(Y7 Z) / Galh G —it
1
*Gy = Gy GyNJ =0 | (incohom) reoif Jual flux’

= should be read as a condition on the choice of complex structure
and Kéhler structure = fix deformations
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= Concrete conjecture: The number of solutions in the described setting
finite. Finitely many choices for Ga.
starting with [Douglas "03] [Acharya,Douglas "06]
= Answer: Yes, if one assumes finiteness of Calabi-Yau manifolds.
[Bakker, TG,Schnell, Tsimerman "21]

= Much more general: Is the number of four-dimensional models arising
from string theory finite?

much activity: [Vafa][Adams,DeWolfe, Taylor] [Kim,Shiu,Vafa] [Kim, Tarazi,Vafa] [Cvetic,Dierigl,Lin,Zang]
[Dierigl, Heckman] [Font,Fraiman,Grana,Nunez,DeFreitas] [Hamada,Vafa] [Taylor etal]
[Kim,Shiu, Vafa],[Lee, Weigand],[Tarazi,Vafa] [Hamada,Montero,Vafa, Valenzuela]

Finiteness criterion seems to be a yes/no-criterion:
= turn finiteness into a structural criterion: tameness conjecture
[TG 21]



Mathematical Formulation

of the Problem
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Calabi-Yau manifolds and moduli spaces

~ (Calabi-Yau manifolds of complex dimension D:

Kahler + ¢, (TY) =0 [:\'] Ricci flat Kahler metric with same Kéhler class
Yau

~ deformation of complex structure of Y preserving Calabi-Yau condition:

=> family Y, varying over complex h”~!!-dimensional unobstructed
moduli space M [Tian][Todorov]

~ M is quasi-projective [Viehweg], can be made smooth [Hironaka]
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Connection with Hodge theory

~ Hodge star * changes over complex structure moduli space M
— complicated

~ How to find solution? — (p,q)-forms in H"'? - Hodge decomposition
H4(Y7 C) . H4,0 D H3,1 an H2,2 D H1,3 D HO,4

Fao e o e
Hodge * = Weil Operator C':  +1 L L e +1

Self-dual solutions satisfy: G4 € HY(Y,Z)N(H* @ H** ¢ H"*)

~ Study how HZ’? changes over the moduli space M
= variations of Hodge structures
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Why 1s finiteness non-trivial?

- Simple case: consider a fixed (p,q)-decomposition (Hodge structure)

Define: polarization Oy, w) = / v AW
Y

Q(G4,Gs) =4 = Q(G4,*Gy) = ||Gyl]* = ¢

- Allow variation of Hodge structure H_’?, x € M: very hard problem

— Weil operator (Hodge star) can degenerate on boundaries of M
— key challenge to show: no infinite tails in the asymptotic regimes of M

~ Idea: use asymptotic Hodge theory: nilpotent orbit theorem [Schmid],
sl(2)-orbit theorem [Schmid][Cattani,Kaplan,Schmid]

= using multi-variable SI(2)-orbit theorem too involved



Theorems i Abstract
Variations of Hodge Structures
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~ remarkable theorem which follows from the Hodge conjecture for Hodge
structures associated to families of projective Kadhler manifolds Y




Reminder of a famous theorem

~ X smooth complex algebraic variety (e.g. moduli space X = M)

- Hodgebundle: p : I/ — X with fibers Hc , = 69 Ho' rc i
p+q=2d

Theorem [Cattani,Deligne,Kaplan '95]: For integer ¢ > 0, locus of integral
Hodge classes

((.CE,U) c e ge JFY 0 L), end Qlu,v) = Z}

/\

\.

is algebraic, and the restriction of P to this set is proper with finite fibers.

- covers the finiteness of the special case: G4 € H* (Y, Z)N 22

(supersymmetric fluxes)
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Generalization to self-dual classes

~ recall Weil operator C' (e.g. Hodge star): Cv =~ %v v € HP:1

Theorem [Bakker, TG,Schnell Tsimerman]: For integer ¢ >0, the locus of
integral self-dual classes

{(:I;,v) c BE: ve Hz, and C,v — v and O(u,v) — f}

is R,y exp- definable/ closed real-analytic subspace of E and the
restriction of p to this set is proper with finite fibers.

quantized flux . / ConC
G, € HA(Y.Z) x(Gy = Gy S




A brief introduction to tame geometry
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A mathematical structure with finiteness

develop a mathematical framework for geometers (respect finiteness):

» Grothendieck’s dream of a tame topology [Esquisse d'un programme]
+ remove pathologies that can occur in ‘ordinary topology’

theory of o-minimal structures comes from model theory (logic)
— gives a generalization of real algebraic geometry
— provides a tame topology intro book [van den Dries]

lectures: Tsimerman (Nov. 2021 Princeton lectures)

Basic idea: specify space of allowed (definable) sets §,, ¢ R"
and allowed (definable) functions f : R — R™

— definable manifolds, definable bundles,... a whole tame geometry

strong finiteness properties
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Fimite subsets on the real hine

~ simplest situation: finite number of subsets of [R

o o oo o . @ finitely many points

finitely many intervals

open intervals
(infinitely long)

- extremely hard to extend this to R". Some intuitive requirements:

» projections to IR should give the above sets

> finite unions, intersections, and products should be allowed

> extending algebraic geometry: sets defined by polynomials included
(algebraic sets)
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Tame Geometry

- Definition: An o-minimal structure S of sets {Sn}n:(),l,..i

S,, are subsets of R"

Sy, is closed under finite intersections, finite unions and complements

v

v

v

{Sn} closed under finite Cartesian products & coordinate projections

v

S,, contain zero set of every polynomial in n variables

v

S1 is the finite union of intervals and points - tameness assumption

= S-definable functions among the S,/s are those whose graph is part
of the o-minimal structure S

- S-definable manifold: finite definable atlas and transition functions
are definable
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constant, or monotonic
and continuous in

each open interval

— differentiable apart from finitely many points

— finitely many suprema and infima
— tame tail to infinity
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Result (1): definable f R— R

split R into finite number
of intervals: f is either
/ \ constant, or monotonic
and continuous in

B

< > ' < > < > .
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Result (2): definable + holomorphic f : C — C — algebraic

Note: complex exponential €° = e" %% . C — C is not definable in any
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Tame Geometry

Result (1): definable f R— R

split R into finite number
of intervals: f is either
/ \ constant, or monotonic
and continuous in

B

< > ' < > < > .
each open interval

Result (2): definable + holomorphic f : C — C — algebraic

Note: complex exponential €° = e" %% . C — C is not definable in any
o-minimal structure

: i T s :
— restrict domain in @, but € : does such an o-minimal structure exist
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Examples of o-minimal structures

. . . i T
~ there is no unique choice of o-minimal structure on [R"™ :

+examples are obtained by stating which functions are allowed
to generate some of the sets — non-trivial

=~ Some important examples:

structure generated by real polynomials: Ralg

Ralg plus restricted real analytic functions: R,

Ralg plus exponential function: Rexp

combination of Ran and Rexp

IRan,exp

Plei o 0o eh) =

J

[Wilkie “96]

[van den Dries, Miller 94|
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Some remarks on Ry oxp

~ To make €° definableon 0 < ¢ < ¢ need already Ran’exp

Ran,exp suffices for most geometric applications

= Functions not definable in Ran,exp [van den Dries,Macintyre,Marker "97]
@)
Gamma function: TI'(z)= / e 't*"1dt restricted to (0, 00)
0
. 2
Error function: / e " dt
0

. — 1
Zeta function:  ((s) = Z - restricted to (1, 00)

=1
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There 1s much more to say:

~ Higher-dimensional definable functions
and sets well understood

exists cell decomposition

./
——
/\

) /) ¢

~ Definability can replace compactness in many famous theorems: e.g.
definable Chow [Peterzil Starchenko “06]

Pila-Wilkie theorem "04 (counting rational points in a definable set)



Some remarks on the proof
of the finiteness theorem
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Step 1: Detinability for periods

= Use definability results of seminal paper by [BakkerKlingler, Tsimerman] 18

- view (' asamap: (C: X — G/K G orthogonal group of Q(:,-)
K orthogonal group of Q(-, Cy-)

Theorem [BKT]: The Weil operator map is definable in IRyp exp.

Proof: uses crucially nilpotent orbit theorem.

Theorem [BKT]: The Weil operator period map @ is definable in Ry, exp.

d: X ->I'"\G/K I" orthogonal group of Q(-,-)|m,
(bigger than monodromy group)
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Step 2: Extension to Hodge bundle

~ Extend definability result to the Hodge bundle

Proposition: The morphism &g : F — I'\ (G IIEE ¢ H@)

between complex vector bundles is definable in ]Ran,exp

Proot: uses partly [Bakker,Mullane "22].

- Idea: show that locus of self-dual classes in I'\(G/K x Hc) is
[R41¢ -definable using lattice theory and definablity of maps
between arithmetic quotients — infer definability result for E



Step 3: Lattice reduction + single orbit

~ Reduction of lattice Hyz into finitely many orbits

Theorem [e.g. Kneser]: The group I’ acts on set {v S Byl w) = g}
with finitely many orbits.

- string theory consistency conditions (linked to having gravity) leads to
a finiteness reduction
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Step 3: Lattice reduction + single orbit

~ Reduction of lattice Hyz into finitely many orbits

Theorem [e.g. Kneser]: The group I acts on set {v S Byl w) = g}
with finitely many orbits.

-~ Prove finiteness in a single orbit: I'a, a € Hy

Proposition: Assume Cya = a and define C, = gCpg~ " then the set
{T(gK,v) e I'\(G/K x H¢) : veTa, Cov=0v}
is definable in Ralg :

Proof: some computations and definablity of I',\G,/K, — I'\G/K [BKT]

groups fixing
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A new swampland conjecture

Tameness conjecture:

All effective theories valid below a fixed finite energy

cut-off scale that can be consistently coupled to quantum

gravity are labelled by a definable parameter space and
must have scalar field spaces and coupling functions that

are definable in an o-minimal structure.

Refined version:

The relevant o-minimal structure is R, exp -



A new swampland conjecture

Tameness conjecture:

All effective theories valid below a fixed finite energy

cut-off scale tha

gravity are labelled by a definable parameter space and

- can be consistently coupled to quantum

must have scalar field spaces and coupling functions that

are definable in

— Finiteness as

an o-minimal structure.

a structural principle in physics:

“ All consistent physical theories are tame “
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Conclusions

Swampland program addresses exciting questions at the interface of
fundamental physics and mathematics

mathematical approach allows us to settle long-standing conjectures:
finiteness theorem for number of self-dual flux solutions M x (flux lattice)
— proof that uses centrally Ry, exp-definability

tame geometry and o-minimal structures appear to be useful in many
string theory settings — tameness in physics — tameness conjecture

How do other quantum gravity conjectures connect to tameness?
|TG,Lanza,Li] in progress

Evidence for tameness in quantum field theory?
with Schlechter,... in progress



Thanks for listening!
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