

Haefliger's differentiable cohomology

Variations on variations on a theorem of Van Est

Luca Accornero (joint work with Marius Crainic)

Friday Fish - September 4th 2020

Utrecht University

What are we going to do today?

Based on Haefliger's Differential cohomology, 1976, Varenna.

• Geometric structures on manifolds M come with invariants in the cohomology ring of M.

- Geometric structures on manifolds M come with invariants in the cohomology ring of M.
- Those are organised in characteristic map from some kind of "universal space".

- Geometric structures on manifolds M come with invariants in the cohomology ring of M.
- Those are organised in characteristic map from some kind of "universal space".
- Haefliger's cohomology:
 - ullet arose in the development of characteristic classes for foliations ${\cal F}$ on manifolds M;

- Geometric structures on manifolds M come with invariants in the cohomology ring of M.
- Those are organised in characteristic map from some kind of "universal space".
- Haefliger's cohomology:
 - arose in the development of characteristic classes for foliations \mathcal{F} on manifolds M;
 - was built having in mind an analogy with flat principal bundles and their characteristic classes.

Characteristic classes of principal bundles

The classical picture for *G*-principal bundles $P \rightarrow M$

Characteristic classes of principal bundles

The classical picture for *G*-principal bundles $P \rightarrow M$

$$\operatorname{Inv}(\mathfrak{g}) \xrightarrow{\kappa_{CW}^{P}} H^{*}(M)$$

$$\kappa^{\operatorname{univ}} \downarrow \qquad \qquad K_{\operatorname{abs}}^{P}$$

$$H^{*}(BG)$$

becomes the following if P carries a flat connection ω :

$$H^*(\mathfrak{g},K) \xrightarrow{\kappa_{\omega}^P} H^*(M)$$
 plus the Van Est isomorphism: $H^*_d(G) \stackrel{\cong}{\to} H^*(\mathfrak{g},K).$

Haefliger's groupoid

The Haefliger's groupoid Γ^q is the groupoid whose arrows space is the space of germs of (local) diffeomorphisms of \mathbb{R}^q .

Haefliger's groupoid

The Haefliger's groupoid Γ^q is the groupoid whose arrows space is the space of germs of (local) diffeomorphisms of \mathbb{R}^q .

Haefliger's approach to foliations:

consider an atlas by foliated charts;

Haefliger's groupoid

The Haefliger's groupoid Γ^q is the groupoid whose arrows space is the space of germs of (local) diffeomorphisms of \mathbb{R}^q .

Haefliger's approach to foliations:

- consider an atlas by foliated charts;
- project in the normal direction;

Haefliger's groupoid

The Haefliger's groupoid Γ^q is the groupoid whose arrows space is the space of germs of (local) diffeomorphisms of \mathbb{R}^q .

Haefliger's approach to foliations:

- consider an atlas by foliated charts;
- project in the normal direction;
- discover cocycles valued in Γ^q .

Haefliger's groupoid

The Haefliger's groupoid Γ^q is the groupoid whose arrows space is the space of germs of (local) diffeomorphisms of \mathbb{R}^q .

Haefliger's approach to foliations:

- consider an atlas by foliated charts;
- project in the normal direction;
- discover cocycles valued in Γ^q .

I.e.: foliations are cocycles valued in the groupoid Γ^q .

The theory produces a diagram of the form

$$H^*(\mathfrak{a}_q, O(q)) \xrightarrow{\kappa^{\mathcal{F}}} H^*(M)$$
 \mathfrak{a}_q is the Lie algebra of formal vector fields. $H^*(B\Gamma^q)$

• $\kappa^{\mathcal{F}}$ is a "geometric map", defined on a computable Lie algebra cohomology $H^*(\mathfrak{a}_q, O(q))$ (as in "flat" Chern-Weil theory).

The theory produces a diagram of the form

$$H^*(\mathfrak{a}_q,O(q)) \xrightarrow{\kappa^{\mathcal{F}}} H^*(M)$$
 \mathfrak{a}_q is the Lie algebra of formal vector fields. $H^*(B\Gamma^q)$

- $\kappa^{\mathcal{F}}$ is a "geometric map", defined on a computable Lie algebra cohomology $H^*(\mathfrak{a}_q, O(q))$ (as in "flat" Chern-Weil theory).
- $\kappa_{\rm abs}^{\mathcal{F}}$ is "abstract", built via classifying spaces; $H^*(B\Gamma^q)$

The theory produces a diagram of the form

$$H^*(\mathfrak{a}_q, O(q)) \xrightarrow{\kappa^{\mathcal{F}}} H^*(M)$$
 \mathfrak{a}_q is the Lie algebra of formal vector fields. $H^*(B\Gamma^q)$

- $\kappa^{\mathcal{F}}$ is a "geometric map", defined on a computable Lie algebra cohomology $H^*(\mathfrak{a}_q, O(q))$ (as in "flat" Chern-Weil theory).
- $\kappa_{\mathrm{abs}}^{\mathcal{F}}$ is "abstract", built via classifying spaces; $H^*(B\Gamma^q)$
 - can be described via a "de Rham-like" approach (Bott-Shulman complex for the groupoid Γ^q)

The theory produces a diagram of the form

$$H^*(\mathfrak{a}_q, O(q)) \xrightarrow{\kappa^{\mathcal{F}}} H^*(M)$$
 \mathfrak{a}_q is the Lie algebra of formal vector fields. $H^*(B\Gamma^q)$

- $\kappa^{\mathcal{F}}$ is a "geometric map", defined on a computable Lie algebra cohomology $H^*(\mathfrak{a}_q, O(q))$ (as in "flat" Chern-Weil theory).
- $\kappa_{\mathrm{abs}}^{\mathcal{F}}$ is "abstract", built via classifying spaces; $H^*(B\Gamma^q)$
 - can be described via a "de Rham-like" approach (Bott-Shulman complex for the groupoid Γ^q)
 - or through sheaf cohomology plus bar-type resolutions (i.e. group-like cochains, on Γ^q, as for discrete groups).

Given that

- foliations can be understood as cocycles valued in groupoids, that is principal groupoid bundles;
- the theory of characteristic classes for foliations closely resembles the one for flat principal bundles;

Given that

- foliations can be understood as cocycles valued in groupoids, that is principal groupoid bundles;
- the theory of characteristic classes for foliations closely resembles the one for flat principal bundles;

one can ask oneself

- whether there is a "differentiable complex" for Γ^q , coming with a Van Est-like isomorphism to $H^*(\mathfrak{a}_q, O(q))$;
- whether there is some "flat connection" around inducing the "geometric" characteristic map.

• Haefliger constructed a differentiable cohomology for Γ^q , and proved a Van Est-type isomorphism $H_{\text{diff}}(\Gamma^q) \cong H^*(\mathfrak{a}_q, O(q))$.

- Haefliger constructed a differentiable cohomology for Γ^q , and proved a Van Est-type isomorphism $H_{\text{diff}}(\Gamma^q) \cong H^*(\mathfrak{a}_q, O(q))$.
- The structure behind his work is unclear. Most of the theory looks more general than Γ^q .

- Haefliger constructed a differentiable cohomology for Γ^q , and proved a Van Est-type isomorphism $H_{\text{diff}}(\Gamma^q) \cong H^*(\mathfrak{a}_q, O(q))$.
- The structure behind his work is unclear. Most of the theory looks more general than Γ^q .
- We are going to clarify Haefliger's construction and provide the conceptual framework where it belongs.

Getting started: groupoids, cocycles, geometric structures

Groupoid: a small category where all the arrows are invertible.

ullet Space of arrows: Γ .

- Space of arrows: Γ.
- Space of units: X.

- Space of arrows: Γ.
- Space of units: X.
- Maps: source & target: $s, t : \Gamma \to X$, unit section $u : X \to \Gamma$.

- Space of arrows: Γ.
- Space of units: X.
- Maps: source & target: $s, t : \Gamma \to X$, unit section $u : X \to \Gamma$.
- Operations: a composition \cdot , an inversion $^{-1}$.

Groupoid: a small category where all the arrows are invertible.

- Space of arrows: Γ.
- Space of units: X.
- Maps: source & target: $s, t : \Gamma \to \mathbf{X}$, unit section $u : \mathbf{X} \to \Gamma$.
- Operations: a composition \cdot , an inversion $^{-1}$.

Lie groupoid: Γ , **X** are manifolds, all the operations and maps are smooth, s, t are submersions.

Étale Lie groupoids

Étale Lie groupoids

A Lie groupoid $s, t : \Gamma \rightrightarrows \mathbf{X}$ is étale if s, t are étale maps.

E.g.: the groupoid

$$\Gamma^{\mathbf{X}} := \operatorname{Germ}(\operatorname{Diff}_{\operatorname{loc}}(\mathbf{X})) \rightrightarrows \mathbf{X},$$

with the germ topology, is étale.

Effectivness

Bisections: sections $\sigma: \mathbf{X} \to \Gamma$, $t \circ \sigma$ is a diffeomorphism.

 Γ étale: $g \in \Gamma$ corresponds to a unique bisection.

Effectivness

Bisections: sections $\sigma: \mathbf{X} \to \Gamma$, $t \circ \sigma$ is a diffeomorphism.

 Γ étale: $g \in \Gamma$ corresponds to a unique bisection.

Effectivness

 Γ is effective if the functor $\Gamma \to \Gamma^{\mathbf{X}}$ is faithful.

9

Pseudogroups

Theorem (Haefliger)

Effective étale Lie groupoids over \mathbf{X} are in 1:1 correspondence with pseudogroups $\mathbf{\Gamma}$ over \mathbf{X} , i.e. subsheaves of $\mathrm{Diff}_{\mathrm{loc}}(\mathbf{X})$ which are closed w.r.t. composition, inversion and have $id_{\mathbf{X}}$ as a section.

Pseudogroups

Theorem (Haefliger)

Effective étale Lie groupoids over \mathbf{X} are in 1:1 correspondence with pseudogroups $\mathbf{\Gamma}$ over \mathbf{X} , i.e. subsheaves of $\mathrm{Diff}_{\mathrm{loc}}(\mathbf{X})$ which are closed w.r.t. composition, inversion and have $id_{\mathbf{X}}$ as a section.

• $\Gamma \to \Gamma := \operatorname{Germ}(\Gamma)$.

Pseudogroups

Theorem (Haefliger)

Effective étale Lie groupoids over \mathbf{X} are in 1:1 correspondence with pseudogroups $\mathbf{\Gamma}$ over \mathbf{X} , i.e. subsheaves of $\mathrm{Diff}_{\mathrm{loc}}(\mathbf{X})$ which are closed w.r.t. composition, inversion and have $id_{\mathbf{X}}$ as a section.

- $\Gamma \to \Gamma := \operatorname{Germ}(\Gamma)$.
- $\Gamma \to \Gamma := t(\operatorname{Bis}_{\operatorname{loc}}(\Gamma)).$

Let Γ be effective étale. A Γ -cocycle on M is given by

• an open cover $\mathcal{U} = \{U_i\}_{i \in I}$ of M;

Let Γ be effective étale. A Γ -cocycle on M is given by

- an open cover $\mathcal{U} = \{U_i\}_{i \in I}$ of M;
- a family of maps $\gamma_{ij}:U_i\cap U_j\to \Gamma$ such that
 - the γ_{ii} 's take values in the units, i.e. they are the same as maps $f_i:U_i\to \mathbf{X};$

Let Γ be effective étale. A Γ -cocycle on M is given by

- an open cover $\mathcal{U} = \{U_i\}_{i \in I}$ of M;
- a family of maps $\gamma_{ij}:U_i\cap U_j\to \Gamma$ such that
 - the γ_{ii} 's take values in the units, i.e. they are the same as maps $f_i:U_i\to \mathbf{X}$;
 - $\gamma_{ij}(x)$ is a germ from $\gamma_{ii}(x)$ to $\gamma_{jj}(x)$ (in Γ);

Let Γ be effective étale. A Γ -cocycle on M is given by

- an open cover $\mathcal{U} = \{U_i\}_{i \in I}$ of M;
- a family of maps $\gamma_{ij}:U_i\cap U_j\to \Gamma$ such that
 - the γ_{ii} 's take values in the units, i.e. they are the same as maps $f_i:U_i\to \mathbf{X}$;
 - $\gamma_{ij}(x)$ is a germ from $\gamma_{ii}(x)$ to $\gamma_{jj}(x)$ (in Γ);
 - $\gamma_{ik}(x) = \gamma_{jk} \circ \gamma_{ij}(x)$ holds for all $i, j, k, x \in U_i \cap U_j \cap U_k$.

Haefliger's approach to foliations

• A Γ^q -cocycle where all the f_i 's are submersions defines a codimension q-foliation on M.

Haefliger's approach to foliations

- A Γ^q -cocycle where all the f_i 's are submersions defines a codimension q-foliation on M.
- If the rank of the f_i 's is not maximal one gets singularities, and the resulting structure is called Haefliger structure.

Haefliger's approach to foliations

- A Γ^q -cocycle where all the f_i 's are submersions defines a codimension q-foliation on M.
- If the rank of the f_i 's is not maximal one gets singularities, and the resulting structure is called Haefliger structure.

 Γ : additional transverse structure, whose local symmetries are controlled by Γ . One gets Γ -foliations and Haefliger Γ -structures.

Principal bundles

One declares two Γ -cocycles indexed by I and J to be equivalent if they are part of a larger cocycle indexed by $I \coprod J$.

Cocycles and principal bundles

Equivalence classes of cocycles in Γ correspond to isomorphism classes of principal Γ -bundles:

The abstract map: the classifying space and its cohomology

Theorem (Haefliger '70)

Theorem (Haefliger '70)

There is a topological space $B\Gamma$ (or $B\Gamma$) such that concordance classes of principal Γ -bundles correspond to homotopy classes of maps $M \to B\Gamma$.

• $B\Gamma$ is the thick geometric realization of the nerve of Γ .

Theorem (Haefliger '70)

- $B\Gamma$ is the thick geometric realization of the nerve of Γ .
- Concordance is best understood as an equivalence relation of structures on M. Two structures are concordant if they are restrictions to the boundary of a structure on $M \times [0,1]$.

Theorem (Haefliger '70)

- $B\Gamma$ is the thick geometric realization of the nerve of Γ .
- Concordance is best understood as an equivalence relation of structures on M. Two structures are concordant if they are restrictions to the boundary of a structure on $M \times [0,1]$.
- As a result, to a Haefliger Γ -structure we can functorially associate a characteristic map $\kappa_{\rm abs}^{\mathcal{P}}: H^*(B\Gamma) \to H^*(M)$.

Theorem (Haefliger '70)

- $B\Gamma$ is the thick geometric realization of the nerve of Γ .
- Concordance is best understood as an equivalence relation of structures on M. Two structures are concordant if they are restrictions to the boundary of a structure on $M \times [0,1]$.
- As a result, to a Haefliger Γ -structure we can functorially associate a characteristic map $\kappa_{\text{abs}}^{\mathcal{P}}: H^*(B\Gamma) \to H^*(M)$.
- $H^*(BG^{\delta}) \cong H^*(G^{\delta})$, the group cohomology of G.

• Continuous Γ -sheaf S: sheaf over X & right Γ -space.

- Continuous Γ -sheaf S: sheaf over X & right Γ -space.
- Equivalently: contravariant functor

$$\mathcal{S}: \mathcal{O}p_{\Gamma}(\mathbf{X}) \to \mathrm{Ab}.$$

 $\mathcal{O}p_{\Gamma}(\mathbf{X})$ is the category where

- Continuous Γ -sheaf S: sheaf over X & right Γ -space.
- Equivalently: contravariant functor

$$\mathcal{S}: \mathcal{O}p_{\Gamma}(\mathbf{X}) \to \mathrm{Ab}.$$

 $\mathcal{O}_{P_{\Gamma}}(\mathbf{X})$ is the category where

• objects: opens of $U \subset X$;

- Continuous Γ-sheaf S: sheaf over **X** & right Γ-space.
- Equivalently: contravariant functor

$$\mathcal{S}: \mathcal{O}p_{\Gamma}(\mathbf{X}) \to \mathrm{Ab}.$$

 $\mathcal{O}p_{\Gamma}(\mathbf{X})$ is the category where

- objects: opens of $U \subset X$;
- morphisms $U \to V$: bisections $\sigma : U \to \Gamma$ s.t. $t \circ \sigma(U) \subset V$.

- Continuous Γ-sheaf S: sheaf over **X** & right Γ-space.
- Equivalently: contravariant functor

$$\mathcal{S}: \mathcal{O}p_{\Gamma}(\mathbf{X}) \to \mathrm{Ab}.$$

 $\mathcal{O}p_{\Gamma}(\mathbf{X})$ is the category where

- objects: opens of $U \subset X$;
- morphisms $U \to V$: bisections $\sigma : U \to \Gamma$ s.t. $t \circ \sigma(U) \subset V$.
- Γ -sheaves form an abelian category $Ab(\Gamma)$.

The k-groupoid cohomology $H^k(\Gamma, S)$: k-th right derived functor of the functor of invariant sections

$$\mathrm{Ab}(\Gamma) \to \mathrm{Ab}, \quad \mathcal{S} \to \mathcal{S}^{\Gamma}(\mathbf{X}).$$

Needed: injective resolutions by Γ -sheaves.

The k-groupoid cohomology $H^k(\Gamma, S)$: k-th right derived functor of the functor of invariant sections

$$\mathrm{Ab}(\Gamma) \to \mathrm{Ab}, \quad \mathcal{S} \to \mathcal{S}^{\Gamma}(\mathbf{X}).$$

Needed: injective resolutions by Γ -sheaves.

Theorem (Moerdijk '98)

 $H^*(\Gamma, \mathcal{S}) \cong H^*(B\Gamma, \hat{\mathcal{S}})$, for a suitable induced sheaf $\hat{\mathcal{S}}$.

The constant sheaf $\mathbb R$ is a Γ -sheaf; $\hat{\mathbb R}=\mathbb R.$

Nerve of Γ : a simplicial manifold associated to Γ .

 $\Gamma^{(p)}$: the space of composable *p*-strings.

Face maps: $d_i : \Gamma^{(p)} \to \Gamma^{(p-1)}$.

Nerve of Γ : a simplicial manifold associated to Γ .

 $\Gamma^{(p)}$: the space of composable *p*-strings.

Face maps: $d_i: \Gamma^{(p)} \to \Gamma^{(p-1)}$.

 $C^p(\Gamma, S)$: sections of t^*S , $t: \Gamma^{(p)} \to X$ target of the first element.

Induced groupoid differential:

$$\delta: C^p(\Gamma, \mathcal{S}) \to C^{p+1}(\Gamma, \mathcal{S}),$$

• Γ is étale \to the sheaves $\Omega^q_{\mathbf{X}}$ are Γ -sheaves.

- Γ is étale \to the sheaves $\Omega^q_{\mathbf{X}}$ are Γ -sheaves.
- Γ is étale $\to C^p(\Gamma, \Omega_{\mathbf{X}}^q) \cong \Omega^q(\Gamma^{(p)})$.

- Γ is étale \to the sheaves $\Omega^q_{\mathbf{X}}$ are Γ -sheaves.
- Γ is étale $\to C^p(\Gamma, \Omega_{\mathbf{X}}^q) \cong \Omega^q(\Gamma^{(p)})$.
- Bott-Shulman double complex: $(\Omega^q(\Gamma^{(p)}), \delta, d_{dR})$.

- Γ is étale \to the sheaves $\Omega^q_{\mathbf{X}}$ are Γ -sheaves.
- Γ is étale $\to C^p(\Gamma, \Omega^q_{\mathbf{x}}) \cong \Omega^q(\Gamma^{(p)})$.
- Bott-Shulman double complex: $(\Omega^q(\Gamma^{(p)}), \delta, d_{dR})$.

Theorem (Haeliger '79)

There is a canonical map $H^*_{\mathrm{dR}}(\Gamma) \to H^*(\Gamma,\mathbb{R})$ which is an isomorphism when Γ is Hausdorff.

A differentiable complex for **□**

The "soft" topology

G Lie group: differentiable complex is the subcomplex of $C^p(G^\delta)$ of smooth cochains. There are two topologies around.

The "soft" topology

G Lie group: differentiable complex is the subcomplex of $C^p(G^\delta)$ of smooth cochains. There are two topologies around.

A different topology on Γ^q

Soft topology on Γ^q : the topology where $[\varphi]_x^n$, $n \in \mathbb{N}$ converges to $[\varphi]_x$ if and only if $j_x^\infty \varphi^n$ converges to $j_x^\infty \varphi$.

 Γ^q is *not étale* with the soft topology & has some kind of compatible *infinite dimensional smooth structure*.

The "soft" topology

G Lie group: differentiable complex is the subcomplex of $C^p(G^\delta)$ of smooth cochains. There are two topologies around.

A different topology on Γ^q

Soft topology on Γ^q : the topology where $[\varphi]_x^n$, $n \in \mathbb{N}$ converges to $[\varphi]_x$ if and only if $j_x^\infty \varphi^n$ converges to $j_x^\infty \varphi$.

 Γ^q is *not étale* with the soft topology & has some kind of compatible *infinite dimensional smooth structure*.

Haefliger's approach: smooth cochains on Γ^q are smooth w.r.t. soft topology and valued in smooth representations.

A cleaner approach: jet groupoids and Lie pseudogroups

We change the groupoid, not the topology.

k-th jet groupoid:
$$J^k\Gamma = \{j_x^k\varphi: x \in \mathbf{X}, \varphi \in \mathbf{\Gamma}\}\$$

Lie pseudogroups

If the tower

$$\cdots \to J^k\Gamma \to J^{k-1}\Gamma \to \cdots \to J^0\Gamma \rightrightarrows \mathbf{X}$$

is a tower of surjective submersions between smooth manifolds and $J^\infty\Gamma\cong \lim\limits_\leftarrow J^k\Gamma$, Γ is called Lie pseudogroup.

The smooth structure of $J^{\infty}\Gamma$

 Γ Lie pseudogroup $\leftrightarrow J^{\infty}\Gamma$ is a profinite dimensional (pf) manifold.

• Pf manifolds: limits of towers of manifolds.

The smooth structure of $J^{\infty}\Gamma$

 Γ Lie pseudogroup $\leftrightarrow J^{\infty}\Gamma$ is a profinite dimensional (pf) manifold.

- Pf manifolds: limits of towers of manifolds.
- Basic differential geometry generalizes straightforwardly.

E.g.:
$$\Omega^*(J^{\infty}\Gamma) := \lim_{\to} \Omega^*(J^k\Gamma) \to \text{classical Cartan calculus}.$$

The smooth structure of $J^{\infty}\Gamma$

 Γ Lie pseudogroup $\leftrightarrow J^{\infty}\Gamma$ is a profinite dimensional (pf) manifold.

- Pf manifolds: limits of towers of manifolds.
- Basic differential geometry generalizes straightforwardly.

E.g.: $\Omega^*(J^{\infty}\Gamma) := \lim_{\to} \Omega^*(J^k\Gamma) \to \text{classical Cartan calculus}.$

The natural map $j : \Gamma \cong \operatorname{Germ}(\Gamma) \to J^{\infty}\Gamma$ is smooth.

The differentiable complex (?)

We want: a subcomplex of $\Omega^q(\Gamma^{(p)})$.

The differentiable complex (?)

We want: a subcomplex of $\Omega^q(\Gamma^{(p)})$.

• Smoothness for cochains: makes sense for $c \in C^p(\Gamma, \mathcal{E})$, where \mathcal{E} is a Γ -sheaf of sections of a smooth vector bundle E; that is, for a representation E of Γ .

The differentiable complex (?)

We want: a subcomplex of $\Omega^q(\Gamma^{(p)})$.

- Smoothness for cochains: makes sense for $c \in C^p(\Gamma, \mathcal{E})$, where \mathcal{E} is a Γ -sheaf of sections of a smooth vector bundle E; that is, for a representation E of Γ .
- Smooth groupoid cochain $c \in C^p_{\text{diff}}(\Gamma, E)$: a cochain $c \in C^p(\Gamma, E)$ s.t. $c = c' \circ j$, $c' : J^{\infty}\Gamma \to t^*E$ smooth section.

The differentiable complex (?)

We want: a subcomplex of $\Omega^q(\Gamma^{(p)})$.

- Smoothness for cochains: makes sense for $c \in C^p(\Gamma, \mathcal{E})$, where \mathcal{E} is a Γ -sheaf of sections of a smooth vector bundle E; that is, for a representation E of Γ .
- Smooth groupoid cochain $c \in C^p_{\text{diff}}(\Gamma, E)$: a cochain $c \in C^p(\Gamma, E)$ s.t. $c = c' \circ j$, $c' : J^{\infty}\Gamma \to t^*E$ smooth section.

Differentiable cohomology

The differentiable cohomology of Γ is the cohomology of the simple complex associated to the double complex (?)

$$C_{\mathrm{diff}}^p(\Gamma, \Lambda^q T^* \mathbf{X}) \hookrightarrow C^p(\Gamma, \Omega_{\mathbf{X}}) = \Omega^q(\Gamma^{(p)})$$

 $\Sigma \rightrightarrows \mathbf{X}$, Lie groupoid. We want to equip $C_d^p(\Sigma, \Lambda^q T^*\mathbf{X})$ with

horizontal differentials

$$\delta^q: C^p_d(\Sigma, \Lambda^q T^* \mathbf{X}) \to C^{p+1}_d(\Sigma, \Lambda^q T^* \mathbf{X}).$$

 $\Sigma \rightrightarrows \mathbf{X}$, Lie groupoid. We want to equip $C_d^p(\Sigma, \Lambda^q T^*\mathbf{X})$ with

horizontal differentials

$$\delta^q: C^p_d(\Sigma, \Lambda^q T^* \mathbf{X}) \to C^{p+1}_d(\Sigma, \Lambda^q T^* \mathbf{X}).$$

vertical differentials

$$d^p: C^p_d(\Sigma, \Lambda^q T^* \mathbf{X}) \to C^p_d(\Sigma, \Lambda^{q+1} T^* \mathbf{X}).$$

 $\Sigma \rightrightarrows \mathbf{X}$, Lie groupoid. We want to equip $C_d^p(\Sigma, \Lambda^q T^*\mathbf{X})$ with

horizontal differentials

$$\delta^q: C_d^p(\Sigma, \Lambda^q T^* \mathbf{X}) \to C_d^{p+1}(\Sigma, \Lambda^q T^* \mathbf{X}).$$

vertical differentials

$$d^p: C^p_d(\Sigma, \Lambda^q T^* \mathbf{X}) \to C^p_d(\Sigma, \Lambda^{q+1} T^* \mathbf{X}).$$

such that

• δ^0 is the usual groupoid differential;

 $\Sigma \rightrightarrows \mathbf{X}$, Lie groupoid. We want to equip $C_d^p(\Sigma, \Lambda^q T^*\mathbf{X})$ with

horizontal differentials

$$\delta^q: C_d^p(\Sigma, \Lambda^q T^* \mathbf{X}) \to C_d^{p+1}(\Sigma, \Lambda^q T^* \mathbf{X}).$$

vertical differentials

$$d^p: C^p_d(\Sigma, \Lambda^q T^* \mathbf{X}) \to C^p_d(\Sigma, \Lambda^{q+1} T^* \mathbf{X}).$$

such that

- δ^0 is the usual groupoid differential;
- d^0 is the de Rham differential;

 $\Sigma \rightrightarrows \mathbf{X}$, Lie groupoid. We want to equip $C_d^p(\Sigma, \Lambda^q T^*\mathbf{X})$ with

horizontal differentials

$$\delta^q: C_d^p(\Sigma, \Lambda^q T^* \mathbf{X}) \to C_d^{p+1}(\Sigma, \Lambda^q T^* \mathbf{X}).$$

vertical differentials

$$d^p: C^p_d(\Sigma, \Lambda^q T^* \mathbf{X}) \to C^p_d(\Sigma, \Lambda^{q+1} T^* \mathbf{X}).$$

such that

- δ^0 is the usual groupoid differential;
- d⁰ is the de Rham differential;
- the Leibniz identities are satisfied;

 $\Sigma \rightrightarrows \mathbf{X}$, Lie groupoid. We want to equip $C_d^p(\Sigma, \Lambda^q T^*\mathbf{X})$ with

horizontal differentials

$$\delta^q: C_d^p(\Sigma, \Lambda^q T^* \mathbf{X}) \to C_d^{p+1}(\Sigma, \Lambda^q T^* \mathbf{X}).$$

vertical differentials

$$d^p: C^p_d(\Sigma, \Lambda^q T^* \mathbf{X}) \to C^p_d(\Sigma, \Lambda^{q+1} T^* \mathbf{X}).$$

such that

- δ^0 is the usual groupoid differential;
- d⁰ is the de Rham differential;
- the Leibniz identities are satisfied;
- δ^* and d^* are compatible (i.e. \rightarrow double complex).

Differentials: representations and connections

Horizontal differentials: representations

 $\delta^q: C^p_d(\Sigma, \Lambda^q T^* \mathbf{X}) \to C^{p+1}_d(\Sigma, \Lambda^q T^* \mathbf{X})$ is equivalent to a representation of Σ on $\Lambda^q T^* X$, $q \ge 1$.

True replacing $\Lambda^q T^* X$ with any vector bundle $E \to X$.

Differentials: representations and connections

Horizontal differentials: representations

 $\delta^q: C^p_d(\Sigma, \Lambda^q T^* \mathbf{X}) \to C^{p+1}_d(\Sigma, \Lambda^q T^* \mathbf{X})$ is equivalent to a representation of Σ on $\Lambda^q T^* X$, $q \ge 1$.

True replacing $\Lambda^q T^*X$ with any vector bundle $E \to X$.

Vertical differentials: connections

 $d^p: C^p_d(\Sigma, \Lambda^q T^*\mathbf{X}) \to C^p_d(\Sigma, \Lambda^{q+1} T^*\mathbf{X})$ is equivalent to a flat Ehresmann connection of $\Sigma^{(p)}$, $p \ge 1$.

True replacing $t: \Sigma^{(p)} \to \mathbf{X}$ with any submersion $P \to X$.

Leibniz identities: it is simpler than it looks

Only one representation; only one connection

The Leibniz identities imply:

- the representation on $\Lambda^q T^* X$ is the induced diagonal action of the action on $T^* X$;
- $H^p = \{(v_1, \ldots, v_p) \in T\Sigma^{(p)} : v_1, \ldots v_p \in H^1\}.$

Hence: we need one representation on TX and one flat connection $\mathcal{C}:=H^1$ on $\Sigma!$

Compatibility: one multiplicative connection

Compatibility condition

 $(C^p(\Sigma, \Lambda^q T^*X), \delta, d_{\mathcal{C}})$ is a double complex iff \mathcal{C} is multiplicative.

 $\mathcal{C}:=H^1$ induces a "quasi-action":

$$a_{g}^{\mathcal{C}}: T_{y}\mathbf{X} \rightarrow T_{x}\mathbf{X}, \quad a_{g}(v) = ds(\operatorname{hor}_{g}^{\mathcal{C}}(v))$$

Multiplicativity implies that this is the representation from δ .

Conclusion: flat Cartan groupoids

Cartan groupoid: a pair (Σ, C) s.t.

- $\Sigma \rightrightarrows X$ is a Lie groupoid;
- C is a multiplicative Ehresmann connection on Σ .

It is called flat if C is a flat connection.

Conclusion: flat Cartan groupoids

Cartan groupoid: a pair (Σ, C) s.t.

- $\Sigma \rightrightarrows X$ is a Lie groupoid;
- C is a multiplicative Ehresmann connection on Σ .

It is called flat if C is a flat connection.

Theorem (A., Crainic)

A Lie groupoid has a Haefliger bicomplex

$$(C_d^p(\Sigma, \Lambda^q T^* \mathbf{X}), \delta, d)$$

as above iff it is a flat Cartan groupoid.

Its cohomology $H^*_{\mathrm{Hae}}(\Sigma, \mathcal{C})$ is called Haefliger cohomology.

Theorem

 $J^{\infty}\Gamma$ is a flat Cartan groupoid.

Theorem

 $J^{\infty}\Gamma$ is a flat Cartan groupoid.

• Holonomic section: $\sigma: \mathbf{X} \to J^k \Gamma$ s.t. $\sigma = j^k \varphi, \ \varphi \in \Gamma$.

Theorem

 $J^{\infty}\Gamma$ is a flat Cartan groupoid.

- Holonomic section: $\sigma: \mathbf{X} \to J^k \Gamma$ s.t. $\sigma = j^k \varphi$, $\varphi \in \Gamma$.
- Cartan distribution: $C^k \subset TJ^k\Gamma$ s.t. maximal horizontal integral manifolds are holonomic sections.

Theorem

 $J^{\infty}\Gamma$ is a flat Cartan groupoid.

- Holonomic section: $\sigma: \mathbf{X} \to J^k \Gamma$ s.t. $\sigma = j^k \varphi, \ \varphi \in \Gamma$.
- Cartan distribution: $C^k \subset TJ^k\Gamma$ s.t. maximal horizontal integral manifolds are holonomic sections.
- Cartan tower:

$$\cdots \to (J^k \Gamma, \mathcal{C}^k) \overset{\pi^{k,k-1}}{\to} (J^{k-1} \Gamma, \mathcal{C}^{k-1}) \to \cdots$$

Theorem

 $J^{\infty}\Gamma$ is a flat Cartan groupoid.

 $(\mathcal{C}^k)_{k\in\mathbb{N}}\to\mathcal{C}^\infty\subset TJ^\infty\Gamma$ multiplicative flat connection.

Theorem

 $J^{\infty}\Gamma$ is a flat Cartan groupoid.

 $(\mathcal{C}^k)_{k\in\mathbb{N}}\to\mathcal{C}^\infty\subset TJ^\infty\Gamma$ multiplicative flat connection.

• Multiplicativity: inherited from multiplicativity of C^k 's.

Theorem

 $J^{\infty}\Gamma$ is a flat Cartan groupoid.

 $(\mathcal{C}^k)_{k\in\mathbb{N}}\to\mathcal{C}^\infty\subset TJ^\infty\Gamma$ multiplicative flat connection.

- Multiplicativity: inherited from multiplicativity of C^{k} 's.
- Flat connection: from the prolongation conditions

Theorem

 $J^{\infty}\Gamma$ is a flat Cartan groupoid.

 $(\mathcal{C}^k)_{k\in\mathbb{N}} \to \mathcal{C}^\infty \subset TJ^\infty\Gamma$ multiplicative flat connection.

- Multiplicativity: inherited from multiplicativity of C^{k} 's.
- Flat connection: from the prolongation conditions
 - $d\pi^{k,k-1}(\mathcal{C}^k \cap \ker(ds)) = 0$;

Theorem

 $J^{\infty}\Gamma$ is a flat Cartan groupoid.

 $(\mathcal{C}^k)_{k\in\mathbb{N}} \to \mathcal{C}^\infty \subset TJ^\infty\Gamma$ multiplicative flat connection.

- Multiplicativity: inherited from multiplicativity of C^k 's.
- Flat connection: from the prolongation conditions
 - $d\pi^{k,k-1}(\mathcal{C}^k \cap \ker(ds)) = 0$;
 - $[d\pi^{k,k-1}(\mathcal{C}^k), d\pi^{k,k-1}(\mathcal{C}^k)] \subset \mathcal{C}^{k-1}$.

Theorem

 $J^{\infty}\Gamma$ is a flat Cartan groupoid.

Differentiable cohomology of Γ :

$$H^*_{\mathrm{diff}}(\Gamma) := H_{\mathrm{Hae}}(J^{\infty}\Gamma, \mathcal{C}^{\infty}).$$

We have the map

$$j^*: H^*_{\mathrm{Hae}}(J^\infty\Gamma, \mathcal{C}^\infty) \to H^*(\Gamma, \mathbb{R}), \quad j: \Gamma \to J^\infty\Gamma$$

Van Est maps

Proper actions: a general Van Est map

Let $\mu:P\to \mathbf{X}$ be Σ -space.

 $(\Sigma \ltimes P, pr_1^{-1}(\mathcal{C}))$ is flat Cartan.

 $\Omega^*(P)^{\Sigma}$: subcomplex of Σ -invariant forms.

Proper actions: a general Van Est map

Let $\mu: P \to \mathbf{X}$ be Σ -space.

 $(\Sigma \ltimes P, pr_1^{-1}(\mathcal{C}))$ is flat Cartan.

 $\Omega^*(P)^{\Sigma}$: subcomplex of Σ -invariant forms.

Theorem (A., Crainic)

If (Σ, \mathcal{C}) acts properly on P then there is a natural map

$$VE_P: H^*_{\mathrm{Hae}}(\Sigma, \mathcal{C}) \to H^*_{\Sigma}(P)$$

Moreover, if μ is submersive with contractible fibers then VE_P is an isomorphism.

A glimpse at the infinitesimal picture: extended isotropy

 $A = \operatorname{Lie}(\Sigma)$, the Lie algebroid of Σ .

$$\rho: A \to TX$$
 anchor map; $[\ ,\]: \Gamma(A) \times \Gamma(A) \to \Gamma(A)$ Lie bracket.

A glimpse at the infinitesimal picture: extended isotropy

 $A = \operatorname{Lie}(\Sigma)$, the Lie algebroid of Σ .

 $\rho: A \to TX$ anchor map; $[\ ,\]: \Gamma(A) \times \Gamma(A) \to \Gamma(A)$ Lie bracket.

Lemma

 ${\cal C}$ induces a Lie bracket $\{\ ,\ \}_{\rm pt}$ on $\Gamma(A)$ such that $(A,\{\ ,\ \}_{\rm pt})$ is a Lie algebra bundle. The isotropy Lie algebra ${\mathfrak g}_{\scriptscriptstyle X}=\ker(\rho)_{\scriptscriptstyle X}$ is a subalgebra of $(A_{\scriptscriptstyle X},\{\ ,\ \}_{\rm pt})$.

Notation: $(\mathfrak{a}_x(A), \{\ ,\ \}_{pt})$, the extended isotropy Lie algebra.

• Γ -vector field: X vector field on X s.t. flow lies in Γ .

- Γ -vector field: X vector field on X s.t. flow lies in Γ .
- Formal Γ-vector fields: infinite jets of Γ-vector fields.

- Γ -vector field: X vector field on X s.t. flow lies in Γ .
- Formal Γ-vector fields: infinite jets of Γ-vector fields.
- Space of formal Γ -vector fields $\leftrightarrow \operatorname{Lie}(J^{\infty}\Gamma)$.

- Γ -vector field: X vector field on X s.t. flow lies in Γ .
- Formal Γ-vector fields: infinite jets of Γ-vector fields.
- Space of formal Γ -vector fields $\leftrightarrow \text{Lie}(J^{\infty}\Gamma)$.
- If X, Y are Γ -vector fields

$$\{j_x^{\infty}X, j_x^{\infty}Y\}_{\mathrm{pt}} = j_x^{\infty}[X, Y].$$

- Γ -vector field: X vector field on X s.t. flow lies in Γ .
- Formal Γ-vector fields: infinite jets of Γ-vector fields.
- Space of formal Γ -vector fields $\leftrightarrow \text{Lie}(J^{\infty}\Gamma)$.
- If X, Y are Γ-vector fields

$$\{j_x^\infty X, j_x^\infty Y\}_{\mathrm{pt}} = j_x^\infty [X,Y].$$

For Γ^q the extended isotropy at 0, denoted by \mathfrak{a}_q , is the Gelfand-Fuchs algebra of formal vector fields.

Van Est map II

Theorem (A., Crainic)

If Σ is transitive, there is a natural isomorphism

$$VE_x: H^*_{\mathrm{Hae}}(\Sigma, \mathcal{C}) \stackrel{\cong}{\to} H^*(\mathfrak{a}_x(A), K)$$

where K is a subgroup of Σ_X such that Σ_X/K is contractible.

Theorem (A., Crainic)

If Σ is transitive, there is a natural isomorphism

$$VE_{x}: H_{\mathrm{Hae}}^{*}(\Sigma, \mathcal{C}) \stackrel{\cong}{\to} H^{*}(\mathfrak{a}_{x}(A), K)$$

where K is a subgroup of Σ_X such that Σ_X/K is contractible.

• $s^{-1}(x)$ is a Σ -space, $\mu = t$ surjective submersion.

Theorem (A., Crainic)

If Σ is transitive, there is a natural isomorphism

$$VE_{x}: H_{\mathrm{Hae}}^{*}(\Sigma, \mathcal{C}) \stackrel{\cong}{\to} H^{*}(\mathfrak{a}_{x}(A), K)$$

where K is a subgroup of Σ_X such that Σ_X/K is contractible.

- $s^{-1}(x)$ is a Σ -space, $\mu = t$ surjective submersion.
- $VE_{s^{-1}(x)}: H^*_{\operatorname{Hae}}(\Sigma, \mathcal{C}) \to H^*_{\Sigma}(s^{-1}(x)).$

Theorem (A., Crainic)

If Σ is transitive, there is a natural isomorphism

$$VE_x: H^*_{\mathrm{Hae}}(\Sigma, \mathcal{C}) \stackrel{\cong}{\to} H^*(\mathfrak{a}_x(A), K)$$

where K is a subgroup of Σ_X such that Σ_X/K is contractible.

- $s^{-1}(x)$ is a Σ -space, $\mu = t$ surjective submersion.
- $VE_{s^{-1}(x)}: H^*_{\operatorname{Hae}}(\Sigma, \mathcal{C}) \to H^*_{\Sigma}(s^{-1}(x)).$
- $\mathcal{X}(s^{-1}(x))^{\Sigma} \stackrel{\cong}{\to} \mathfrak{a}_{x}(A)$.

Theorem (A., Crainic)

If Σ is transitive, there is a natural isomorphism

$$VE_x: H^*_{\mathrm{Hae}}(\Sigma, \mathcal{C}) \stackrel{\cong}{\to} H^*(\mathfrak{a}_x(A), K)$$

where K is a subgroup of Σ_X such that Σ_X/K is contractible.

- $s^{-1}(x)$ is a Σ -space, $\mu = t$ surjective submersion.
- $VE_{s^{-1}(x)}: H^*_{\operatorname{Hae}}(\Sigma, \mathcal{C}) \to H^*_{\Sigma}(s^{-1}(x)).$
- $\mathcal{X}(s^{-1}(x))^{\Sigma} \stackrel{\cong}{\to} \mathfrak{a}_{x}(A)$.
- Pass to K-basic cochains.

Haefliger isomorphism

When $\Sigma = J^{\infty} \Gamma^q$, one gets

$$H^*_{\mathrm{Hae}}(J^\infty\Gamma^q,\mathcal{C}^\infty)\stackrel{\cong}{\to} H^*(\mathfrak{a}_q,O(q))$$

 $O(q) \subset (J^{\infty}\Gamma^q)_{\times}$ as infinite jets of orthogonal maps.

This is the Van Est-like isomorphism proven by Haefliger.

Formal structures: geometric map

A general "geometric" characteristic map

Let $\pi: P \to M$ be principal Σ -bundle, $\mathcal{C}_P \subset TP$.

• $a: \Sigma \times P \to P$ multiplicative w.r.t. $\mathcal{C}_P: \mathcal{C} \cdot \mathcal{C}_P \subset \mathcal{C}_P$.

A general "geometric" characteristic map

Let $\pi: P \to M$ be principal Σ -bundle, $\mathcal{C}_P \subset TP$.

- $a: \Sigma \times P \to P$ multiplicative w.r.t. $\mathcal{C}_P: \mathcal{C} \cdot \mathcal{C}_P \subset \mathcal{C}_P$.
- (P, C_P) flat principal (Σ, C) -bundle: a is multiplicative w.r.t. C_P and C_P is involutive.

A general "geometric" characteristic map

Let $\pi: P \to M$ be principal Σ -bundle, $\mathcal{C}_P \subset TP$.

- $a: \Sigma \times P \to P$ multiplicative w.r.t. $\mathcal{C}_P: \mathcal{C} \cdot \mathcal{C}_P \subset \mathcal{C}_P$.
- (P, C_P) flat principal (Σ, C) -bundle: a is multiplicative w.r.t. C_P and C_P is involutive.

Theorem (A., Crainic)

 (P,\mathcal{C}_P) flat principal (Σ,\mathcal{C}) -bundle. There is a natural map

$$\kappa_{\mathrm{Hae}}^P: H^*_{\mathrm{Hae}}(\Sigma, \mathcal{C}) \to H^*(M)$$

Formal Haefliger structures

Let
$$(\Sigma, \mathcal{C}) = (J^{\infty}\Gamma, \mathcal{C}^{\infty})$$
.

• Flat principal (Σ, \mathcal{C}) -bundles \leftrightarrow formal Haefliger Γ -structure.

Formal Haefliger structures

Let
$$(\Sigma, \mathcal{C}) = (J^{\infty}\Gamma, \mathcal{C}^{\infty}).$$

- Flat principal (Σ, \mathcal{C}) -bundles \leftrightarrow formal Haefliger Γ -structure.
- Haefliger Γ -structure \to formal integrable Haefliger Γ -structure

Formal Haefliger structures

Let
$$(\Sigma, \mathcal{C}) = (J^{\infty}\Gamma, \mathcal{C}^{\infty}).$$

- Flat principal (Σ, \mathcal{C}) -bundles \leftrightarrow formal Haefliger Γ -structure.
- Haefliger Γ -structure \rightarrow formal integrable Haefliger Γ -structure
- Not all formal structures are integrable.

"Geometric" characteristic map

Theorem (A., Crainic)

For (integrable formal) Haefliger Γ -structures $P \to M$,

 k_{Hae}^{P} is defined regardless of integrability!

Combining with Van Est isomorphism:

$$\kappa_{\mathrm{geo}}^P: H^*(\mathfrak{a}_{\mathsf{x}}(A), K) \to H^*(M)$$

Thank you!