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What are we going to do today?



Some context

Based on Haefliger’s Differential cohomology, 1976, Varenna.

• Geometric structures on manifolds M come with invariants in

the cohomology ring of M.

• Those are organised in characteristic map from some kind of

“universal space”.

• Haefliger’s cohomology:

• arose in the development of characteristic classes for foliations

F on manifolds M;

• was built having in mind an analogy with flat principal bundles

and their characteristic classes.
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Characteristic classes of principal bundles

The classical picture for G -principal bundles P → M

Inv(g) H∗(M)

H∗(BG )

κP
CW

κuniv

κP
abs

becomes the following if P carries a flat connection ω:

H∗(g,K ) H∗(M)

H∗(G δ)

κP
ω

κuniv

κP
abs

plus the Van Est isomorphism:

H∗d(G )
∼=→ H∗(g,K ).
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The cocycle approach to foliations

Haefliger’s groupoid

The Haefliger’s groupoid Γq is the groupoid whose arrows space

is the space of germs of (local) diffeomorphisms of Rq.

Haefliger’s approach to foliations:

• consider an atlas by foliated charts;

• project in the normal direction;

• discover cocycles valued in Γq.

I.e.: foliations are cocycles valued in the groupoid Γq.
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Characteristic classes of foliations

The theory produces a diagram of the form

H∗(aq,O(q)) H∗(M)

H∗(BΓq)

κF

κuniv

κFabs

aq is the Lie algebra of formal

vector fields.

• κF is a“geometric map”, defined on a computable Lie algebra

cohomology H∗(aq,O(q)) (as in “flat” Chern-Weil theory).

• κFabs is “abstract”, built via classifying spaces; H∗(BΓq)

• can be described via a “de Rham-like” approach

(Bott-Shulman complex for the groupoid Γq)

• or through sheaf cohomology plus bar-type resolutions (i.e.

group-like cochains, on Γq, as for discrete groups).
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A differentiable cohomology for Γq

Given that

• foliations can be understood as cocycles valued in groupoids,

that is principal groupoid bundles;

• the theory of characteristic classes for foliations closely

resembles the one for flat principal bundles;

one can ask oneself

• whether there is a “differentiable complex” for Γq, coming

with a Van Est-like isomorphism to H∗(aq,O(q));

• whether there is some “flat connection” around inducing the

“geometric” characteristic map.

5



A differentiable cohomology for Γq

Given that

• foliations can be understood as cocycles valued in groupoids,

that is principal groupoid bundles;

• the theory of characteristic classes for foliations closely

resembles the one for flat principal bundles;

one can ask oneself

• whether there is a “differentiable complex” for Γq, coming

with a Van Est-like isomorphism to H∗(aq,O(q));

• whether there is some “flat connection” around inducing the

“geometric” characteristic map.

5



A differentiable cohomology for Γq

• Haefliger constructed a differentiable cohomology for Γq, and

proved a Van Est-type isomorphism Hdiff(Γq) ∼= H∗(aq,O(q)).

• The structure behind his work is unclear. Most of the theory

looks more general than Γq.

• We are going to clarify Haefliger’s construction and provide

the conceptual framework where it belongs.
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Getting started: groupoids,

cocycles, geometric structures



You’ll hear this word a lot: groupoids

Groupoid: a small category where all the arrows are invertible.

• Space of arrows: Γ.

• Space of units: X.

• Maps: source & target: s, t : Γ→ X, unit section u : X→ Γ.

• Operations: a composition ·, an inversion −1.

Lie groupoid: Γ,X are manifolds, all the operations and maps are

smooth, s, t are submersions.
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Étale Lie groupoids

Étale Lie groupoids

A Lie groupoid s, t : Γ ⇒ X is étale if s, t are étale maps.

E.g.: the groupoid

ΓX := Germ(Diff loc(X)) ⇒ X,

with the germ topology, is étale.
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Effectivness

Bisections: sections σ : X→ Γ, t ◦ σ is a diffeomorphism.

Γ étale: g ∈ Γ corresponds to a unique bisection.

Effectivness

Γ is effective if the functor Γ→ ΓX is faithful.
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Pseudogroups

Theorem (Haefliger)

Effective étale Lie groupoids over X are in 1 : 1 correspondence

with pseudogroups Γ over X, i.e. subsheaves of Diff loc(X) which

are closed w.r.t. composition, inversion and have idX as a section.

• Γ→ Γ := Germ(Γ).

• Γ→ Γ := t(Bisloc(Γ)).
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Cocycles

Let Γ be effective étale. A Γ-cocycle on M is given by

• an open cover U = {Ui}i∈I of M;

• a family of maps γij : Ui ∩ Uj → Γ such that

• the γii ’s take values in the units, i.e. they are the same as

maps fi : Ui → X;

• γij(x) is a germ from γii (x) to γjj(x) (in Γ);

• γik(x) = γjk ◦ γij(x) holds for all i , j , k, x ∈ Ui ∩ Uj ∩ Uk .
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Haefliger’s approach to foliations

• A Γq-cocycle where all the fi ’s are submersions defines a

codimension q-foliation on M.

• If the rank of the fi ’s is not maximal one gets singularities,

and the resulting structure is called Haefliger structure.

Γ: additional transverse structure, whose local symmetries are

controlled by Γ. One gets Γ-foliations and Haefliger Γ-structures.
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Principal bundles

One declares two Γ-cocycles indexed by I and J to be equivalent if

they are part of a larger cocycle indexed by I
∐

J.

Cocycles and principal bundles

Equivalence classes of cocycles in Γ correspond to isomorphism

classes of principal Γ-bundles:

Γ

����

!! P

µ
xx

π

  

X M
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The abstract map: the classifying

space and its cohomology



Haefliger’s classifying space

Theorem (Haefliger ’70)

There is a topological space BΓ (or BΓ) such that concordance

classes of principal Γ-bundles correspond to homotopy classes of

maps M → BΓ.

• BΓ is the thick geometric realization of the nerve of Γ.

• Concordance is best understood as an equivalence relation of

structures on M. Two structures are concordant if they are

restrictions to the boundary of a structure on M × [0, 1].

• As a result, to a Haefliger Γ-structure we can functorially

associate a characteristic map κPabs : H∗(BΓ)→ H∗(M).

• H∗(BG δ) ∼= H∗(G δ), the group cohomology of G .
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A model for H∗(BΓ): groupoid cohomology of Γ

• Continuous Γ-sheaf S: sheaf over X & right Γ-space.

• Equivalently: contravariant functor

S : OpΓ(X)→ Ab.

OpΓ(X) is the category where

• objects: opens of U ⊂ X;

• morphisms U → V : bisections σ : U → Γ s.t. t ◦ σ(U) ⊂ V .

• Γ-sheaves form an abelian category Ab(Γ).

15



A model for H∗(BΓ): groupoid cohomology of Γ

• Continuous Γ-sheaf S: sheaf over X & right Γ-space.

• Equivalently: contravariant functor

S : OpΓ(X)→ Ab.

OpΓ(X) is the category where

• objects: opens of U ⊂ X;

• morphisms U → V : bisections σ : U → Γ s.t. t ◦ σ(U) ⊂ V .

• Γ-sheaves form an abelian category Ab(Γ).

15



A model for H∗(BΓ): groupoid cohomology of Γ

• Continuous Γ-sheaf S: sheaf over X & right Γ-space.

• Equivalently: contravariant functor

S : OpΓ(X)→ Ab.

OpΓ(X) is the category where

• objects: opens of U ⊂ X;

• morphisms U → V : bisections σ : U → Γ s.t. t ◦ σ(U) ⊂ V .

• Γ-sheaves form an abelian category Ab(Γ).

15



A model for H∗(BΓ): groupoid cohomology of Γ

• Continuous Γ-sheaf S: sheaf over X & right Γ-space.

• Equivalently: contravariant functor

S : OpΓ(X)→ Ab.

OpΓ(X) is the category where

• objects: opens of U ⊂ X;

• morphisms U → V : bisections σ : U → Γ s.t. t ◦ σ(U) ⊂ V .

• Γ-sheaves form an abelian category Ab(Γ).

15



A model for H∗(BΓ): groupoid cohomology of Γ

• Continuous Γ-sheaf S: sheaf over X & right Γ-space.

• Equivalently: contravariant functor

S : OpΓ(X)→ Ab.

OpΓ(X) is the category where

• objects: opens of U ⊂ X;

• morphisms U → V : bisections σ : U → Γ s.t. t ◦ σ(U) ⊂ V .

• Γ-sheaves form an abelian category Ab(Γ).

15



A model for H∗(BΓ): groupoid cohomology of Γ

The k-groupoid cohomology Hk(Γ,S): k-th right derived functor

of the functor of invariant sections

Ab(Γ)→ Ab, S → SΓ(X).

Needed: injective resolutions by Γ-sheaves.

Theorem (Moerdijk ’98)

H∗(Γ,S) ∼= H∗(BΓ, Ŝ), for a suitable induced sheaf Ŝ.

The constant sheaf R is a Γ-sheaf; R̂ = R.
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A model for H∗(BΓ): groupoid cohomology of Γ

Nerve of Γ: a simplicial manifold associated to Γ.

Γ(p): the space of composable p-strings.

Face maps: di : Γ(p) → Γ(p−1).

Cp(Γ,S): sections of t∗S, t : Γ(p) → X target of the first element.

Induced groupoid differential:

δ : Cp(Γ,S)→ Cp+1(Γ,S),

17
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A model for H∗(BΓ): groupoid cohomology of Γ

• Γ is étale → the sheaves Ωq
X are Γ-sheaves.

• Γ is étale → Cp(Γ,Ωq
X) ∼= Ωq(Γ(p)).

• Bott-Shulman double complex: (Ωq(Γ(p)), δ, ddR).

Theorem (Haeliger ’79)

There is a canonical map H∗dR(Γ)→ H∗(Γ,R) which is an

isomorphism when Γ is Hausdorff.

18
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A differentiable complex for Γ



The “soft” topology

G Lie group: differentiable complex is the subcomplex of Cp(G δ)

of smooth cochains. There are two topologies around.

A different topology on Γq

Soft topology on Γq: the topology where [ϕ]nx , n ∈ N converges

to [ϕ]x if and only if j∞x ϕn converges to j∞x ϕ.

Γq is not étale with the soft topology & has some kind of

compatible infinite dimensional smooth structure.

Haefliger’s approach: smooth cochains on Γq are smooth w.r.t.

soft topology and valued in smooth representations.
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A cleaner approach: jet groupoids and Lie pseudogroups

We change the groupoid, not the topology.

k-th jet groupoid: JkΓ = {jkx ϕ : x ∈ X, ϕ ∈ Γ}

Lie pseudogroups

If the tower

· · · → JkΓ→ Jk−1Γ→ · · · → J0Γ ⇒ X

is a tower of surjective submersions between smooth manifolds

and J∞Γ ∼= lim
←

JkΓ, Γ is called Lie pseudogroup.

20



The smooth structure of J∞Γ

Γ Lie pseudogroup ↔ J∞Γ is a profinite dimensional (pf) manifold.

• Pf manifolds: limits of towers of manifolds.

• Basic differential geometry generalizes straightforwardly.

E.g.: Ω∗(J∞Γ) := lim
→

Ω∗(JkΓ) → classical Cartan calculus.

The natural map j : Γ ∼= Germ(Γ)→ J∞Γ is smooth.
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The differentiable complex (?)

We want: a subcomplex of Ωq(Γ(p)).

• Smoothness for cochains: makes sense for c ∈ Cp(Γ, E),

where E is a Γ-sheaf of sections of a smooth vector bundle E ;

that is, for a representation E of Γ.

• Smooth groupoid cochain c ∈ Cp
diff(Γ,E ): a cochain

c ∈ Cp(Γ,E ) s.t. c = c ′ ◦ j , c ′ : J∞Γ→ t∗E smooth section.

Differentiable cohomology

The differentiable cohomology of Γ is the cohomology of the

simple complex associated to the double complex (?)

Cp
diff(Γ,ΛqT ∗X) ↪→ Cp(Γ,ΩX) = Ωq(Γ(p))
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The wish list

Σ ⇒ X, Lie groupoid. We want to equip Cp
d (Σ,ΛqT ∗X) with

• horizontal differentials

δq : Cp
d (Σ,ΛqT ∗X)→ Cp+1

d (Σ,ΛqT ∗X).

• vertical differentials

dp : Cp
d (Σ,ΛqT ∗X)→ Cp

d (Σ,Λq+1T ∗X).

such that

• δ0 is the usual groupoid differential;

• d0 is the de Rham differential;

• the Leibniz identities are satisfied;

• δ∗ and d∗ are compatible (i.e. → double complex).
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Differentials: representations and connections

Horizontal differentials: representations

δq : Cp
d (Σ,ΛqT ∗X)→ Cp+1

d (Σ,ΛqT ∗X) is equivalent to a

representation of Σ on ΛqT ∗X , q ≥ 1.

True replacing ΛqT ∗X with any vector bundle E → X .

Vertical differentials: connections

dp : Cp
d (Σ,ΛqT ∗X)→ Cp

d (Σ,Λq+1T ∗X) is equivalent to a flat

Ehresmann connection of Σ(p), p ≥ 1.

True replacing t : Σ(p) → X with any submersion P → X .
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Leibniz identities: it is simpler than it looks

Only one representation; only one connection

The Leibniz identities imply:

• the representation on ΛqT ∗X is the induced diagonal action

of the action on T ∗X ;

• Hp = {(v1, . . . , vp) ∈ TΣ(p) : v1, . . . vp ∈ H1}.

Hence: we need one representation on TX and one flat connection

C := H1 on Σ!
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Compatibility: one multiplicative connection

Compatibility condition

(Cp(Σ,ΛqT ∗X ), δ, dC) is a double complex iff C is multiplicative.

C := H1 induces a “quasi-action”:

aCg : TyX→ TxX, ag (v) = ds(horCg (v))

Multiplicativity implies that this is the representation from δ.
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Conclusion: flat Cartan groupoids

Cartan groupoid: a pair (Σ, C) s.t.

• Σ ⇒ X is a Lie groupoid;

• C is a multiplicative Ehresmann connection on Σ.

It is called flat if C is a flat connection.

Theorem (A., Crainic)

A Lie groupoid has a Haefliger bicomplex

(Cp
d (Σ,ΛqT ∗X), δ, d)

as above iff it is a flat Cartan groupoid.

Its cohomology H∗Hae(Σ, C) is called Haefliger cohomology.
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Flat Cartan groupoids: the example we care about

Theorem

J∞Γ is a flat Cartan groupoid.

28
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• Cartan distribution: Ck ⊂ TJkΓ s.t. maximal horizontal

integral manifolds are holonomic sections.

• Cartan tower:
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Flat Cartan groupoids: the example we care about

Theorem

J∞Γ is a flat Cartan groupoid.

(Ck)k∈N → C∞ ⊂ TJ∞Γ multiplicative flat connection.

• Multiplicativity: inherited from multiplicativity of Ck ’s.

• Flat connection: from the prolongation conditions

• dπk,k−1(Ck ∩ ker(ds)) = 0;

• [dπk,k−1(Ck), dπk,k−1(Ck)] ⊂ Ck−1.
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Flat Cartan groupoids: the example we care about

Theorem

J∞Γ is a flat Cartan groupoid.

Differentiable cohomology of Γ:

H∗diff(Γ) := HHae(J∞Γ, C∞).

We have the map

j∗ : H∗Hae(J∞Γ, C∞)→ H∗(Γ,R), j : Γ→ J∞Γ

28



Van Est maps



Proper actions: a general Van Est map

Let µ : P → X be Σ-space.

(Σ n P, pr−1
1 (C)) is flat Cartan.

Ω∗(P)Σ: subcomplex of Σ-invariant forms.

Theorem (A., Crainic)

If (Σ, C) acts properly on P then there is a natural map

VEP : H∗Hae(Σ, C)→ H∗Σ(P)

Moreover, if µ is submersive with contractible fibers then VEP is

an isomorphism.
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A glimpse at the infinitesimal picture: extended isotropy

A = Lie(Σ), the Lie algebroid of Σ.

ρ : A→ TX anchor map; [ , ] : Γ(A)× Γ(A)→ Γ(A) Lie bracket.

Lemma

C induces a Lie bracket { , }pt on Γ(A) such that (A, { , }pt) is

a Lie algebra bundle. The isotropy Lie algebra gx = ker(ρ)x is a

subalgebra of (Ax , { , }pt).

Notation: (ax(A), { , }pt), the extended isotropy Lie algebra.

30



A glimpse at the infinitesimal picture: extended isotropy

A = Lie(Σ), the Lie algebroid of Σ.

ρ : A→ TX anchor map; [ , ] : Γ(A)× Γ(A)→ Γ(A) Lie bracket.

Lemma

C induces a Lie bracket { , }pt on Γ(A) such that (A, { , }pt) is

a Lie algebra bundle. The isotropy Lie algebra gx = ker(ρ)x is a

subalgebra of (Ax , { , }pt).

Notation: (ax(A), { , }pt), the extended isotropy Lie algebra.

30



Formal Γ-vector fields

• Γ-vector field: X vector field on X s.t. flow lies in Γ.

• Formal Γ-vector fields: infinite jets of Γ-vector fields.

• Space of formal Γ-vector fields ↔ Lie(J∞Γ).

• If X ,Y are Γ-vector fields

{j∞x X , j∞x Y }pt = j∞x [X ,Y ].

For Γq the extended isotropy at 0, denoted by aq, is the

Gelfand-Fuchs algebra of formal vector fields.
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Van Est map II

Theorem (A., Crainic)

If Σ is transitive, there is a natural isomorphism

VEx : H∗Hae(Σ, C)
∼=→ H∗(ax(A),K )

where K is a subgroup of Σx such that Σx/K is contractible.

• s−1(x) is a Σ-space, µ = t surjective submersion.

• VEs−1(x) : H∗Hae(Σ, C)→ H∗Σ(s−1(x)).

• X (s−1(x))Σ
∼=→ ax(A).

• Pass to K -basic cochains.
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Haefliger isomorphism

When Σ = J∞Γq, one gets

H∗Hae(J∞Γq, C∞)
∼=→ H∗(aq,O(q))

O(q) ⊂ (J∞Γq)x as infinite jets of orthogonal maps.

This is the Van Est-like isomorphism proven by Haefliger.
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Formal structures: geometric map



A general “geometric” characteristic map

Let π : P → M be principal Σ-bundle, CP ⊂ TP.

• a : Σ× P → P multiplicative w.r.t. CP : C · CP ⊂ CP .

• (P, CP) flat principal (Σ, C)-bundle: a is multiplicative w.r.t.

CP and CP is involutive.

Theorem (A., Crainic)

(P, CP) flat principal (Σ, C)-bundle. There is a natural map

κPHae : H∗Hae(Σ, C)→ H∗(M)
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Formal Haefliger structures

Let (Σ, C) = (J∞Γ, C∞).

• Flat principal (Σ, C)-bundles ↔ formal Haefliger Γ-structure.

• Haefliger Γ-structure→ formal integrable Haefliger Γ-structure

• Not all formal structures are integrable.
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“Geometric” characteristic map

Theorem (A., Crainic)

For (integrable formal) Haefliger Γ-structures P → M,

H∗diff(Γ) H∗(M)

H∗(BΓ)

κP
Hae

j∗
κPabs

is commutative.

kPHae is defined regardless of integrability!

Combining with Van Est isomorphism:

κPgeo : H∗(ax(A),K )→ H∗(M)
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Thank you!
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