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Decomposition ideas in the study of complex objects

Thurston’s “topology implies geometry” work in

geometry of 3-manifolds;

theory of surface homeomorphisms;

dynamics of rational maps.

Example: Geometrization of 3-manifolds

In 2D: Every compact surface admits either

spherical geometry (genus 0),

Eucledian geometry (genus 1),

hyperbolic geometry (genus ≥ 2).

Let M be a (compact, connected, orientable) topological 3-manifold.

Question: Does M admits a geometric structure?

(M admits unique piecewise-linear and smooth structures [Moise’52])



Thurston’s vision on 3-manifolds [Thurston’80s - Perelman’00s]

Every topological 3-manifold can be decomposed naturally (along

essential spheres and tori) into pieces so that each piece carries one of the

eight standard geometric structures:

spherical S
3
, Euclidean R

3
, hyperbolic H

3
;

two products: S
2 ×R, H2 ×R;

three special geometries: Sol, Nil, �SL2(R).
An embedded sphere S ⊂M is non-essential if it bounds a solid 3-ball

in M on at least one side, and is essential otherwise.

[Kneser, Milnor, Jaco–Shalen, Johansson] canonical decompositions of M along

essential spheres and tori.

The manifolds with the 7 non-hyperbolic metrics all have some particular fibrations

and are topologically classified [Seifert’33].
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Decomposition theorem

(joint with Dima Dudko and Dierk Schleicher)

Every postcritically-finite rational map with non-empty Fatou set can be

canonically decomposed into

crochet maps (have “very thinly connected Julia sets”) and

Sierpiński carpet maps (have“very heavily connected Juila sets”).



Dynamics of rational maps

Let f ∶ Ĉ→ Ĉ be a rational map.

Ĉ is the Riemann sphere;

f n = f ○ ⋅ ⋅ ⋅ ○ f is the nth iterate of f .

Complex dynamics studies dynamical properties of rational maps under iteration.

z0 ∈ Ĉ is a periodic point of period p if f p(z0) = z0 and p > 0 is minimal.

The multiplier of z0 is � ∶= (f p)′(z0).
If ��� < 1, z0 is called attracting;

If ��� > 1, z0 is called repelling.

Example: f (z) = − 1

3
(z4 − 4z) has 5 fixed points: 0, 1, ! = e2⇡i�3, !2 = e4⇡i�3, ∞.

f ′(1) = f ′(!) = f ′(!2) = f ′(∞) = 0, thus 1,!,!2,∞ are attracting:

if z is close to z0 ∈ {1,!,!2,∞}, then f n(z)���→
n→∞ z0.

f ′(0) = 4

3
, thus 0 is repelling.



Julia and Fatou sets

Let f ∶ Ĉ→ Ĉ be a rational map.

The Julia set Jf is the closure of the set of repelling periodic points.

The Fatou set Ff ∶= Ĉ �Jf .

A Fatou component is a connected component of Ff .

Intuition: f behaves “regularly” on Ff and “chaotically” on Jf .



Critical and postcritical set of a rational map

Each rational map f ∶ Ĉ→ Ĉ is a branched covering map, that is, f is

continuous;

surjective;

locally z � zk , k ∈ N, after homeomorphic coordinate changes

(k is called the local degree).

c ∈ Ĉ is a critical point if f is not locally injective at c .

Cf – the set of all critical points of f .

Pf ∶= �∞n=1 f n(Cf ) – the postcritical set of f .

Global dynamics of f is controlled by the dynamics of Cf .



Figure: The Mandelbrot setM and the Julia sets of fc(z) = z2 + cM = {c ∈ C ∶ (f nc (0))n∈N is bounded} = {c ∈ C ∶ Jfc is connected}

Picture by S. Koch

f is postcritically-finite (pcf) if #Pf <∞, i.e., each critical point has finite orbit.

pcf maps are rather special (it is a countable family),

BUT! they are structurally very important.

Conjecture (McMullen)

The set of rational maps that are quasiconformally conjugate to pcf maps in a
neighborhood of their Julia set is dense in the space of rational maps.



Julia and Fatou set for pcf rational maps

For a pcf rational map:

Jf is a compact, connected, locally connected set in Ĉ.

Ff = �z ∈ Ĉ ∶ {f n(z)}n∈N converges to a periodic critical cycle� .
Each Fatou component ⌦ is simply connected, @⌦ is locally connected.

Figure: The Fatou and Julia set of f (z) = − 1

3
(z4 − 4z).
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Decomposition scissors – Invariant multicurves

Let f ∶S2 → S2
be a pcf branched covering map.

C (f ) – the set of all simple closed curves in S2 � Pf .

� ∈ C (f ) is essential if each of the two connected components of S2 � �
contains at least two points from Pf , and is peripheral otherwise.

⑤ → of



A multicurve is a non-empty finite family � ⊂ C (f ) of essential curves that
are pairwise disjoint and pairwise non-isotopic rel. Pf .

A multicurve � is f -invariant if:

(i) f −1(�) ⊂ �: each essential component of f −1(�) is homotopic to a curve in �.

(ii) � ⊂ f −1(�): each curve in � is homotopic to a component of f −1(�).

998 -t⑤



Decomposition theory [Pilgrim]

Let f ∶S2 → S2
be a pcf branched covering map with an invariant multicurve �.

A small sphere �S2 is a connected component of S2 � �, which we view as a

finitely punctured sphere.

For a periodic (up to isotopy rel. Pf ) small sphere �S2, the first return map
f k ∶�S2 →�S2 of f to �S2 is called a small map.
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Decomposition results

Theorem (Thurston, Pilgrim, Selinger)

Let f ∶S2 → S2 be a pcf branched covering map. Then there is a canonical
multicurve �Th (possibly empty) such that each small map f k ∶ Ŝ2 → Ŝ2 is either

a homeomorphism (elliptic type);

a double cover of a torus endomorphism (parabolic type);

a rational map (hyperbolic type).

If �Th ≠ � and f has hyperbolic orbifold then �Th is the canonical Thurston obstruction.

Theorem (Nielsen-Thurston)
Let S be a closed oriented surface and f ∶S → S be a homeomorphism. Then there is a
canonical (i.e., maximal) multicurve � such that each small map f k ∶ Ŝ → Ŝ is either

pseudo-Anosov;

or periodic.



Question: Is there a natural way to decompose pcf rational maps?

Idea: Use the structure of the Julia set! Namely, touching Fatou components

“many” touching Fatou components no touching Fatou components

Extract maximal clusters of

touching Fatou components



Cactoid quotient

Consider the equivalence relation ∼F on Ĉ that collapses all Fatou components,

i.e., ∼F is the smallest closed equivalence relation on Ĉ, s.t.,

∼F ⊃ {(x1, x2) ∶ x1, x2 ∈ ⌦ for a Fatou component ⌦}.
The quotient Q(f ) ∶= Ĉ�∼F is a sphere cactoid (a union of segments and spheres).

@ (f) : • • • •



Decomposition theorem [Dudko-H.-Schleicher]

Let f be a pcf rational map.

f is called a Sierpiński carpet map if Jf is homeomorphic to the standard

Sierpiński carpet.

f is called a crochet map (or a Newton-like map) if Q(f ) is a single point.

Equivalently, there is a finite f -invariant connected graph G with Pf ⊂ G
such that G ∩Jf is countable.

Theorem
Let f be a pcf rational map with Ff ≠ �. Then there exits a canonical
multicurve �cro, s.t., each small map in the decomposition of f along �cro is either

a crochet map

or a Sierpiński carpet map.

True in a topological setup (Böttcher expanding Thurston maps). Allows to localize

Thurston obstructions �Th: if � ∈ �Th then either � ∈ �cro or � is in a Sierpiński sphere.



Main ingredients of the proof

Crochet algorithm

(1) Compute maximal clusters of touching Fatou components.

(2) Decompose the map with respect to the boundary multicurve of the clusters.

(3) Iterate (1) and (2) for each small map until all small maps are crochet or Sierpiński.

(4) Glue small crochet maps that correspond to the same point in Q(f ).



Main ingredients of the proof

Properties of the cactoid quotient Q(f )
Consider f̃ ∶Q(f )→ Q(f ) and the semi-conjugacy ⇡f̃ ∶ Ĉ→ Q(f ).

Small crochet spheres project under ⇡f̃ to (marked) points in Q(f ) and
small Sierpiński spheres project to spheres in Q(f ).
The quotient map f̃ ∶Q(f )→ Q(f ) is topologically expanding.

Let g ∶X → X be another expanding quotient of f with the semi-conjugacy

⇡g ∶ Ĉ→ X . Then ⇡g factors through ⇡f̃ .

Ĉ

Q(f )
X

⇡f̃ ⇡g

f

f̃

g



Characterization of crochet maps [Dudko-H.-Schleicher]

Theorem
Let f be pcf rational map with Ff ≠ �. Then the following are equivalent.

(i) f is a crochet map, that is, Q(f ) is a single point;

(ii) there is a finite f -invariant connected graph G with Pf ⊂ G such thatG ∩Jf is countable.

(iii) there is a finite f -invariant connected graph G with Pf ⊂ G such that the
topological entropy of f �G is 0;

(iv) Jf has countable separation property, that is, for each x , y ∈ Jf there is a
countable subset S ⊂ Jf such that x and y belong to di↵erent connected
components of Jf � S .



Connections to geometric group theory

Sullivan’s dictionary:

a framework relating dynamics of rational maps and Kleinian groups.

Limit spaces of Kleinian groups

Pictures by C. McMullen

Similar objects, methods, proofs (Sullivan’s no-wandering-domain theorems);

The “rational dynamics analog” of Cannon’s conjecture is established

[Bonk-Meyer, Häıssinsky-Pilgrim].



Question
How can we measure “geometric complexity” of a fractal?

For example, consider Hausdor↵ dimension dimH.

Conformal dimension of a metric space X :

ConfDim(X ) ∶= inf{dimH(Y) ∶ metric spaces Y quasisymmetric to X}
Similarly, one defines Ahlfors-regular conformal dimension ARConfDim.

(provide natural invariants for limit spaces of boundaries of Gromov hyperbolic groups)

For a pcf rational map f with the decomposing curve �cro:

ARConfDim(Jf ) ≥ max (ARConfDim(small Julia sets),Q(�cro))
Theorem (Insung Park, based on a criterion by Pilgrim-D.Thurston)

A hyperbolic pcf rational map f is a crochet map if and only if ARConfDim(Jf ) = 1.



Connections to geometric group theory

Iterated monodromy groups [Nekrashevych]

Let f ∶ Ĉ→ Ĉ be a pcf rational map and t ∈ Ĉ � Pf be a basepoint.

⇡1(Ĉ � Pf , t)� f −1(t) by the monodromy action

⇡1(Ĉ � Pf , t)� �∞n=0 f −n(t) — iterated monodromy action

IMG(f ) ∶= ⇡1(Ĉ � Pf , t)� ker — iterated monodromy group

IMG’s provide a useful algebraic tool and invariant in complex dynamics.

IMG(f ) is a self-similar group.

There is a natural identification �∞n=0 f −n(t)←→ {finite words in an alphabet X}
∀g ∈ IMG(f ), x1 ∈ X ∃h ∈ IMG(f ), s.t. g(x1x2 . . . xn) = g(x1)h(x2 . . . xn)



IMG’s frequently have “exotic” algebraic properties:

IMG(z2 + i) is of intermediate growth;

IMG(z2 − 1) is an amenable group of exponential growth.

Question
Are there connections between dynamical properties of rational maps and algebraic

properties of their IMG’s?

Amenability of IMG’s
A pcf rational map f is a crochet map if and only if the IMG(f ) is generated by an

automaton of polynomial growth.

[Dudko-H.-Schleicher]

In this case, IMG(f ) is amenable.

[Juschenko-Nekrashevych-de la Salle, Nekrashevych-Pilgrim-D. Thurston]

Question
Is there a natural decomposition for the limit spaces of contracting self-similar groups?



THANK YOU!


