
Infinite-dimensional Geometry :
Theory and Applications

Alice Barbara Tumpach

Laboratoire Painlevé, Lille University, France
& Wolfgang Pauli Institut, Vienna, Austria

FWF Grant I 5015-N

15th International Young Researchers Workshop on
Geometry, Mechanics and Control

Alice Barbara Tumpach Infinite-dimensional Geometry : Theory and Applications



Lecture 3 : some pathologies
Toys
Traps
Poisson bracket not given by a Poisson tensor
Banach Poisson-Lie groups

Outline

Lecture 1
Basics notions in infinite-dimensional geometry

Lecture 2
Inverse Function Theorems : Banach version and Nash-Moser version

Lecture 3
Some pathologies of infinite-dimensional geometry

1 Toys : Geometric structures
2 Traps of infinite-dimensional Geometry
3 Poisson Bracket not given by a Poisson tensor
4 Banach Poisson-Lie groups

Alice Barbara Tumpach Infinite-dimensional Geometry : Theory and Applications



Lecture 3 : some pathologies
Toys
Traps
Poisson bracket not given by a Poisson tensor
Banach Poisson-Lie groups

What are the Toys we can play with?

Riemannian ⊂ Symplectic ⊂ Poisson Geometry

Riemannian metric = smoothly varying inner product on a manifold M

gx : TxM × TxM → R
(U,V ) 7→ gx(U,V )

strong Riemannian metric = for every x ∈ M, gx : TxM → (TxM)∗

is an isomorphism
weak Riemannian metric = for every x ∈ M, gx : TxM → (TxM)∗

is just injective

Levi-Cevita connection may not exist for a weak Riemannian metric.
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What are the Toys we can play with?

Riemannian ⊂ Symplectic ⊂ Poisson Geometry

Symplectic form = smoothly varying skew-symmetric bilinear form

ωx : TxM × TxM → R
(U,V ) 7→ ωx(U,V )

with dw = 0 and (TxM)⊥w = {0}

strong symplectic form = for every x ∈ M, ωx : TxM → (TxM)∗

is an isomorphism
weak symplectic form = for every x ∈ M, ωx : TxM → (TxM)∗

is just injective

Darboux Theorem does not hold for a weak symplectic form
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What are the Toys we can play with?

Riemannian ⊂ Symplectic ⊂ Poisson Geometry

Hamiltonian Mechanics

(M, g) strong Riemannian manifold

[ : TxM ' T∗
x M [−1 = ]

U 7→ gx (U, ·)
Kinetic energy = Hamiltonian
H : T∗M → R

ηx 7→ gx (η
]
x , η

]
x )

(T∗M, ω) strong symplectic manifold
π : T∗M → M

ω = dθ

θ(x,η) : Tx,ηT∗M → R Liouville 1-form
X 7→ η(π∗(X ))

geodesic flow = flow of Hamiltonian vector field XH : dH = ω(XH , ·)
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What are the Toys we can play with?

Riemannian ⊂ Symplectic ⊂ Poisson Geometry

Poisson bracket = family of bilinear maps
{·, ·}U : C∞(U)× C∞(U)→ C∞(U), U open in M with

skew-symmetry {f , g}U = −{g , f }U
Jacobi identity {f , {g , h}U}U + {g , {h, f }U}U + {h, {f , g}U}U = 0
Leibniz rule {f , gh}U = {f , g}Uh + g{f , h}U

A strong symplectic form defines a Poisson bracket by
{f , g} = ω(Xf ,Xg ) where df = ω(Xf , ·) and dg = ω(Xg , ·)

A Poisson bracket may not be given by a bivector field
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What are the Toys we can play with?

Riemannian
Symplectic
Complex

 ⊂ Kähler ⊂ hyperkähler Geometry

Complex structure = smoothly varying endomorphism J
of the tangent space s.t. J2 = −1.

Integrable complex structure : s. t. there exists an holomorphic atlas
Formally integrable complex structure : with Nijenhuis tensor = 0

Newlander-Nirenberg Theorem is not true in general :
formal integrability does not imply integrability.
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What are the traps of infinite-dimensional geometry?

In infinite-dimensional geometry, the golden rule is :
"Never believe anything you have not proved yourself!"

The distance function associated to a Riemannian metric may by the zero
function (Example by Michor and Mumford).

Levi-Cevita connection may not exist for weak Riemannian metrics

Hopf-Rinow Theorem does not hold in general : geodesic completeness 6= metric
completeness

Darboux Theorem does not apply to weak symplectic forms

A formally integrable complex structure does not imply the existence of a
holomorphic atlas

the tangent space differs from the space of derivations (even on a Hilbert space)

a Poisson bracket may not be given by a bivector field (even on a Hilbert space)

there are Lie algebras that can not be enlarged to Lie groups (Examples by
Milnor or Neeb)
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Poisson bracket not given by a Poisson tensor

Queer Poisson Bracket = Poisson bracket not given by a Poisson tensor
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Poisson bracket not given by a Poisson tensor

H separable Hilbert space

Kinetic tangent vector X ∈ TxH equivalence classes of curves c(t),
c(0) = x , where c1 ∼ c2 if they have the same derivative at 0 in a chart.

Operational tangent vector x ∈H is a linear map D : C∞x (H )→ R
satisfying Leibniz rule :

D(fg)(x) = Df g(x) + f (x) Dg

Alice Barbara Tumpach Infinite-dimensional Geometry : Theory and Applications



Lecture 3 : some pathologies
Toys
Traps
Poisson bracket not given by a Poisson tensor
Banach Poisson-Lie groups

Poisson bracket not given by a Poisson tensor

Ingredients :
Riesz Theorem
Hahn-Banach Theorem
compact operators K (H ) ( B(H ) bounded operators
⇒ ∃` ∈ B(H )∗ such that `(id) = 1 and `| K (H ) = 0.

Queer tangent vector [Kriegl-Michor]

Define Dx : C∞x (H )→ R, Dx(f ) = `(d2(f )(x)), where the bilinear map
d2(f )(x) is identified with an operator A ∈ B(H ) by Riesz Theorem

d2(f )(x)(X ,Y ) = 〈X ,AY 〉

Then Dx is an operational tangent vector at x ∈H of order 2
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Poisson bracket not given by a Poisson tensor

Queer tangent vector [Kriegl-Michor]

Let us show that Dx(f ) = `(d2(f )(x)) satisfies Leibniz rule :

Dx(fg)(x) = Dx f .g(x) + f (x).Dxg

The first and second derivatives of the product fg applied to X ,Y ∈H
give

d(fg)(x)(X ) = df (x)(X ).g(x) + f (x).dg(x)(X )

d2(fg)(x)(X ,Y ) = d2f (x)(X ,Y ).g(x) + df (x)(X )dg(x)(Y )
+df (x)(Y )dg(x)(X ) + f (x)d2g(x)(X ,Y )

d2(fg)(x)(X ,Y ) = d2f (x)(X ,Y ).g(x) + 〈∇f (x),X 〉〈∇g(x),Y 〉
+〈∇f (x),Y 〉〈∇g(x),X 〉+ f (x)d2g(x)(X ,Y )
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Poisson bracket not given by a Poisson tensor

Queer tangent vector [Kriegl-Michor]

Identify the second derivative of f (resp. g) with an operator A (resp. B)

d2(f )(x)(X ,Y ) = 〈X ,AY 〉 and d2(g)(x)(X ,Y ) = 〈X ,BY 〉

we get

d2(fg)(x)(X ,Y ) = 〈X ,AY 〉.g(x) + 〈X ,∇f (x)〉〈∇g(x),Y 〉
+〈Y ,∇f (x)〉〈∇g(x),X 〉+ f (x).〈X ,AY 〉

d2(fg)(x)(X ,Y ) = 〈X , g(x).AY +∇f (x)〈∇g(x),Y 〉
+〈Y ,∇f (x)〉∇g(x) + f (x).AY 〉

Hence d2(fg)(x) is identified with the operator

d2(fg)(x) = A.g(x) +∇f (x)∇g(x)T +∇g(x)∇f (x)T + f (x).B
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Poisson bracket not given by a Poisson tensor

Queer tangent vector [Kriegl-Michor]

Note that ∇f (x)∇g(x)T and ∇g(x)∇f (x)T are rank 1 operators, hence
compact.

Dx(fg) = `(d2(fg)(x))
= `

(
A.g(x) +∇f (x)∇g(x)T +∇g(x)∇f (x)T + f (x).B

)
But `(∇f (x)∇g(x)T ) = 0 and `(∇g(x)∇f (x)T ) = 0, hence

Dx(fg) = Dx f .g(x) + f (x).Dxg
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Poisson bracket not given by a Poisson tensor

Queer Poisson bracket [Beltita-Golinski-Tumpach]

Consider M = H × R. Denote points of M as (x , λ).
Consider Dx acting on f ∈ C∞x (H ) by Dx(f ) = `(d2(f )(x)).
Then {·, ·} defined by

{f , g}(x , λ) := Dx (f (·, λ))
∂g

∂λ
(x , λ)− ∂f

∂λ
(x , λ)Dx (g(·, λ))

can not be represented by a bivector field Π : T ∗M × T ∗M → R.

The Hamiltonian vector field associated to h(x , λ) = −λ is

Xh = {h, ·} = Dx

Reference :
D. Beltita, T. Golinski, A.B.Tumpach, Queer Poisson Brackets, Journal
of Geometry and Physics
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Banach Poisson–Lie groups

Poisson–Lie group = Lie group with compatible Poisson structure
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Poisson–Lie groups in the finite-dimensional case

connected simply connected Poisson–Lie groups

m

Lie-bialgebras

m

Manin triples
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Poisson–Lie groups in the infinite-dimensional case

Banach Poisson–Lie group + restrictions on Poisson bracket

⇓

Banach Lie-bialgebra + Banach Lie-Poisson space

m

Manin triple
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Poisson–Lie groups in the infinite-dimensional case

Definition of a Manin triple

A Banach Manin triple consists of a triple of Banach Lie algebras
(g, g+, g−) over a field K and a non-degenerate symmetric bilinear
continuous map 〈·, ·〉g on g such that

1 the bilinear map 〈·, ·〉g is invariant with respect to the bracket [·, ·]g
of g, i.e.

〈[x , y ]g, z〉g + 〈y , [x , z ]g〉g = 0, ∀x , y , z ∈ g; (1)

2 g = g+ ⊕ g− as Banach spaces;
3 both g+ and g− are Banach Lie subalgebras of g;
4 both g+ and g− are isotropic with respect to the bilinear map 〈·, ·〉g.
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Poisson–Lie groups in the infinite-dimensional case

Example of a Manin triple

u(n) = Lie-algebra of the unitary group U(n)
= space of skew-symmetric matrices

b(n) = Lie-algebra of the Borel group B(n,C)
= space of upper triangular matrices with real coef. on diagonal

Then the space M(n,C) = gl(n,C) of all complex matrices is a Manin
triple :

M(n,C) = u(n)⊕ b(n)

with non-degenerate symmetric bilinear continuous map 〈·, ·〉 given by

〈A,B〉 = ImTr(AB) = imaginary part of trace(AB)
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Bruhat-Poisson structure of finite-dimensional Grassmannians
Proposition :

U(n) and B(n,C) are dual Poisson-Lie groups
the Grassmannians Gr(p, n) = U(n)/(U(p)× U(n − p)) are Poisson
homogeneous spaces
the right action of B(n,C) on Gr(p, n) is a Poisson map
the symplectic leaves of Gr(p, n) are the orbits under the action of
B(n,C)

Reference :
J.-H. Lu, A. Weinstein, Poisson Lie groups, Dressing Transformations,
and Bruhat Decompositions, Journal of Differential Geometry, 1990.
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Poisson–Lie groups in the infinite-dimensional case

Counterexample of a Manin triple

H = H+ ⊕H−= separable complex Hilbert space, dimH± =∞

U1,2 =

{(
A B
C D

)
∈ U(H ),A,D ∈ L1,B,C ∈ L2

}
u1,2 = Lie-algebra of the unitary group U1,2

= space of skew-symmetric matrices with diagonal block trace class
and non-diagonal block Hilbert-Schmidt

Ures =

{(
A B
C D

)
∈ U(H ),B,C ∈ L2

}
Bres = invertible triangular operators

(
A B
0 D

)
with strictly positive coefficients on the diagonal and B ∈ L2

bres = Lie-algebra of the Bres
= space of upper triangular operators with real coef. on diagonal
and upper-right block Hilbert-Schmidt

b1,2 = space of upper triangular operators with real coef. on diagonal
upper-right block Hilbert-Schmidt and diagonal block trace-class
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Poisson–Lie groups in the infinite-dimensional case

Counterexample of a Manin triple

Lres(H ) := {
(
A B
C D

)
,B and C Hilbert-Schmidt}

L1,2(H ) := {
(
A B
C D

)
,A and C Trace class,B and C Hilbert-Schmidt}

Then
u1,2 ⊕ b1,2 ( L1,2(H )

the map 〈·, ·〉 defined on u1,2 × bres by

〈A,B〉 = ImTr(AB) = imaginary part of (rest) trace(AB)

is a non-degenerate symmetric bilinear continuous map, in other
word a duality pairing, but u1,2 ⊕ bres can NOT be maid to a Manin
triple.
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Example of bounded operator with unbounded triangular truncation [Davidson, Nest Algebras]
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

the triangular truncation is unbounded on the Banach space of trace class operators

Does there exists a trace class operator whose triangular truncation is not trace class?
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Theorem [T] :

Ures(H ) and Bres(H ) are Banach Poisson–Lie groups
The restricted Grassmannian

Grres(H ) = Ures(H )/U(H+)× U(H−)

is a Poisson homogeneous space
the right action of Bres(H ) on Grres(H ) is a Poisson map
the symplectic leaves of Grres(H ) are the orbits of Bres(H ).

Reference :
A.B.Tumpach, Banach Poisson Lie groups, and Bruhat-Poisson structure
of the restricted Grasssmannian, Communications in Mathematical
Physics, 2020.
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Poisson manifold modelled on a non-separable Banach space

Problems :
(1) no bump functions available (norm not even C 1 away from the

origin)
(2) Leibniz rule does not imply existence of Poisson tensor (there exists

derivation of order greater then 1)
(3) existence of Hamiltonian vector field is not automatic
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Definition of a Banach Poisson manifold
Definition of a Poisson tensor :
M Banach manifold, F a subbundle of T ∗M in duality with TM.
π smooth section of Λ2F∗(F) is called a Poisson tensor on M with
respect to F if :

1 for any closed local sections α, β of F, the differential d (π(α, β)) is
a local section of F;

2 (Jacobi) for any closed local sections α, β, γ of F,

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β))) = 0.

Definition of a Poisson Manifold :
A Banach Poisson manifold is a triple (M,F, π) consisting of a smooth
Banach manifold M, a subbundle F of the cotangent bundle T ∗M in
duality with TM, and a Poisson tensor π on M with respect to F.
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Banach symplectic manifold

Any Banach symplectic manifold (M, ω) is naturally a generalized
Banach Poisson manifold (M,F, π) with

1 F = ω](TM);
2 π : ω](TM)× ω](TM)→ R defined by (α, β) 7→ ω(Xα,Xβ) where

Xα and Xβ are uniquely defined by α = ω(Xα, ·) and β = ω(Xβ , ·).
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Definition of Banach Poisson-Lie groups

Definition : A Banach Poisson-Lie group B is a Banach Lie group
equipped with a Banach Poisson manifold structure such that the group
multiplication m : B ×B → B is a Poisson map, where B ×B is endowed
with the product Poisson structure.

Proposition : Let B be a Banach Lie group and (B,B, π) a Banach
Poisson structure on B. Then B is a Banach Poisson-Lie group if and
only if

1 B is invariant under left and right multiplications by elements in B,
2 the subspace u := Be ⊂ b∗, where e is the unit element of B, is

invariant under the coadjoint action of B on b∗ and the map

πr : B → Λ2u∗(u)
g 7→ R∗∗g−1πg ,

is a 1-cocycle on B with respect to the coadjoint representation of B
in Λ2u∗(u).
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Banach Lie bialgebras

Definition : Let b be a Banach Lie algebra, and a duality pairing 〈·, ·〉b,u
between b and a normed vector space u. One says that b is a Banach Lie
bialgebra with respect to u if
(1) b acts continuously by coadjoint action on u.
(2) there is a 1-cocycle θ : b→ Λ2u∗(u) with respect to the adjoint

representation of b on Λ2u∗(u), i.e. satisfying

θ ([x , y ]) (α, β) = θ(y)(ad∗xα, β) + θ(y)(α, ad∗xβ)
−θ(x)(ad∗yα, β)− θ(x)(α, ad∗yβ)

where x , y ∈ b and α, β ∈ u.
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Banach Lie bialgebras versus Manin triple

Definition : [A. A. Odzijewicz, T. Ratiu, 2003]
We will say that b is a Banach Lie-Poisson space with respect to u if u is
in duality with b and is a Banach Lie algebra (u, [·, ·]u) which acts
continuously on b by coadjoint action.

Theorem [T] :
Consider two Banach Lie algebras (b, [·, ·]b) and (u, [·, ·]u) in duality.
Denote by g the Banach space g = b⊕ u with norm
‖ · ‖g = ‖ · ‖b + ‖ · ‖u. The following assertions are equivalent.
(1) b is a Banach Lie-Poisson space and a Banach Lie bialgebra with

respect to u;
(2) (g, b, u) is a Manin triple for the natural non-degenerate symmetric

bilinear map

〈·, ·〉g : g× g → K
(x , α)× (y , β) 7→ 〈x , β〉b,u + 〈y , α〉b,u.

Alice Barbara Tumpach Infinite-dimensional Geometry : Theory and Applications



Lecture 3 : some pathologies
Toys
Traps
Poisson bracket not given by a Poisson tensor
Banach Poisson-Lie groups

Banach Lie–Poisson spaces

Theorem [T]

The Banach Lie algebra u1,2(H ) is not a Banach Lie–Poisson space with
respect to bres(H ).

Consequently there is no Banach Manin triple structure on the triple of
Banach Lie algebras (bres(H )⊕ u1,2(H ), bres(H ), u1,2(H )) for the
duality pairing given by the imaginary part of the trace.
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Theorem [T] :

Let (G+,F, π) be a Banach Poisson–Lie group. Then g+ is a Banach Lie
bialgebra with respect to g−. The Lie bracket in g− is given by

[α1, β1]g− := TeΠr (·)(α1, β1) ∈ g− ⊂ g∗+, α1, β1 ∈ g− ⊂ g∗+, (2)

where Πr := R∗∗g−1π : G+ → Λ2g∗−, and TeΠr : g+ → Λ2g∗− denotes the
differential of Πr at the unit element e ∈ G+.

Theorem [T] :

Let (G+,F, π) be a Banach Poisson–Lie group.If the map π] : F→ F∗
defined by π](α) := π(α, ·) takes values in TG+ ⊂ F∗, then g+ is a
Banach Lie–Poisson space with respect to g− := Fe .
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Poisson–Lie groups in the infinite-dimensional case

Banach Poisson–Lie group G + π](α) := π(α, ·) takes values in TG

⇓

Banach Lie-bialgebra + Banach Lie-Poisson space

m

Manin triple
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Poisson–Lie groups in the infinite-dimensional case

THANK YOU FOR YOUR ATTENTION !

COME AND VISIT VIENNA !

FWF Grant I 5015-N : Banach Poisson–Lie Groups, Integrable
systems, and extension to the Fréchet context
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