Infinite-dimensional Geometry : Theory and Applications

Alice Barbara Tumpach

Laboratoire Painlevé, Lille University, France & Wolfgang Pauli Institut, Vienna, Austria FWF Grant I 5015-N

15th International Young Researchers Workshop on Geometry, Mechanics and Control

Outline

Lecture 1

Basics notions in infinite-dimensional geometry

Lecture 2

Inverse Function Theorems : Banach version and Nash-Moser version

Lecture 3

Some pathologies of infinite-dimensional geometry

Outline

Lecture 1 : Basics notions in infinite-dimensional geometry

- Manifolds : model spaces and their smooth functions
- 3 Tangent bundles, Cotangent bundles and their relatives
- Examples from Geometry, Shape Analysis and Gauge Theory
- Sey Tools from Functional Analysis

Lecture 2

Inverse Function Theorems : Banach version and Nash-Moser version

Lecture 3

Some pathologies of infinite-dimensional geometry

Outline

Lecture 1

Basics notions in infinite-dimensional geometry

Lecture 2

Inverse Function Theorems : Banach version and Nash-Moser version

- The Banach version and its proof
- Tame category and Nash-Moser version
- O Toolkit to use the Nash-Moser version
- Ideas of Nash-Moser's proof
- Some applications

Lecture 3

Some pathologies of infinite-dimensional geometry

Why infinite-dimensional geometry?

At the backstage of finite-dimensional geometry

- existence of geodesics on a finite-dimensional manifold is an infinite-dimensional phenomenon
 - initial value problem or shooting : geodesic is a solution of a Cauchy problem, i.e. a fixed point of a contraction in an appropriate infinite-dimensional space of curves
 - 2 boundary value problem: geodesic is a curve minimising an energy functional on a infinite-dimesnional space of curves
- natural objects on a finite-dimensional manifold are elements of an infinite-dimensional space (vector fields, Riemannian metrics, mesures...)
- Each time one want to vary the geometry of a finite-dimensional manifold, one ends up with a infinite-dimensional manifold (of Riemannian metric, of connexions, of symplectic forms....)

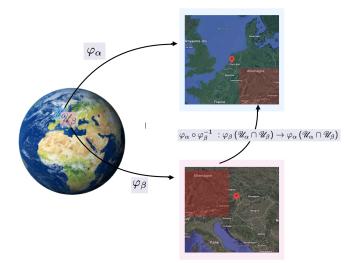
Why infinite-dimensional geometry?

What is not covered by these Lectures?

- The convenient setting of global analysis, Andreas Kriegl and Peter W. Michor, volume 53 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.
- Diffeological spaces, J.-M. Souriau. Groupes différentiels. In Differential geometrical methods in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), volume 836 of Lecture Notes in Math., pages 91–128. Springer, Berlin, 1980.
- Bastiani calculus on locally convex spaces, A. Bastiani, Applications différentiables et variétés différentiables de dimension infinie, J. Analyse Math. 13 (1964):1–114.
- Frölicher spaces, Alfred Frölicher. Smooth structures. In Category theory (Gummersbach, 1981), volume 962 of Lecture Notes in Math., pages 69–81. Springer, Berlin, 1982.
- Ringed spaces, Egeileh, Michel, and Tilmann Wurzbacher. "Infinite-dimensional manifolds as ringed spaces." Publications of the Research Institute for Mathematical Sciences, vol. 53, no. 1, 2017.
- Comparative smootheologies, Andrew Stacey, Theory and Applications of Categories, Vol. 25, No. 4, 2011, pp. 64–117.
- Differential calculus in locally convex spaces, Keller, H.H., Lecture Notes in Mathematics, Vol. 417 (Springer-Verlag, Berlin-New York, 1974)

Manifolds Bundles Examples Key Tools

Definition of an infinite-dimensional manifold



Manifolds Bundles Examples Key Tools

Definition of an infinite-dimensional manifold

The notion of manifold is build out from the notion of SMOOTH maps (or \mathscr{C}^k , or \mathscr{C}^w) between MODEL SPACES, the crucial condition on the set of smooth maps is the CHAIN RULE.

Manifolds Bundles Examples Key Tools

Charts and complete Atlas

Definition of a chart

Definition of an atlas

 \mathscr{C}^k equivalent atlases

 $\label{eq:Manifold} \mbox{Manifold} = \mbox{Hausdorff topological space with an equivalence class of \mathscr{C}^k atlases}$

Manifolds Bundles Examples Key Tools

Charts and complete Atlas

Definition of a chart

A **chart** on a topological space \mathscr{M} is a triple $(\mathscr{U}, \varphi, \mathscr{F}_{\alpha})$ where \mathscr{U} is an open set in \mathscr{M} and ϕ an homeomorphism from \mathscr{U} to an open set in a model topological vector space \mathscr{F}_{α} .

Definition of an atlas

An **atlas** on a topological space \mathscr{M} is a collection of charts $(\mathscr{U}_{\alpha}, \varphi_{\alpha}, \mathscr{F}_{\alpha})_{\alpha \in \mathscr{I}}$ such that $\cup_{\alpha \in \mathscr{I}} \mathscr{U}_{\alpha} = \mathscr{M}$

Atlas of class \mathscr{C}^k

An **atlas** $\mathscr{A} = (\mathscr{U}_{\alpha}, \varphi_{\alpha}, \mathscr{F}_{\alpha})_{\alpha \in \mathscr{I}}$ on \mathscr{M} is of class \mathscr{C}^{k} if all transition maps are \mathscr{C}^{k} -maps between the model topological vector spaces : $\forall (\mathscr{U}_{\alpha}, \varphi_{\alpha}, \mathscr{F}_{\alpha}) \in \mathscr{A}$ and $(\mathscr{U}_{\beta}, \varphi_{\beta}, \mathscr{F}_{\beta}) \in \mathscr{A}$ such that $\mathscr{U}_{\alpha} \cap \mathscr{U}_{\beta} \neq \emptyset$ $\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : \varphi_{\beta} (\mathscr{U}_{\alpha} \cap \mathscr{U}_{\beta}) \to \varphi_{\alpha} (\mathscr{U}_{\alpha} \cap \mathscr{U}_{\beta})$ is of class \mathscr{C}^{k}

Charts and complete Atlas

\mathscr{C}^k equivalent atlases

Two atlases on a topological space \mathscr{M} are said to be \mathscr{C}^k equivalent if their union is of class \mathscr{C}^k

Manifolds of class \mathscr{C}^k

A manifold of class \mathscr{C}^k $(k \ge 0)$ is an Hausdorff topological space endowed with an equivalence class of \mathscr{C}^k -atlases.

Hausdorff space

A topological space \mathscr{M} is said to be **Hausdorff** if for any pair of distinct points $f_0 \neq f_1$ in \mathscr{M} one can find two disjoints open sets $\mathscr{U}_0 \cap \mathscr{U}_1 = \emptyset$ in \mathscr{M} such that $f_0 \in \mathscr{U}_0$ and $f_1 \in \mathscr{U}_1$

Manifolds Bundles Examples Key Tools

Remarks

On the global level

WE WILL NOT ASSUME that a manifold $\mathcal M$ is

- **paracompact** (every open cover has an open refinement that is locally finite)
- admits smooth partitions of unity
- second countability (the topology has a countable base)
- separability (there exists a countable dense subset)
- Lindelöf (every open cover has a countable subcover)

On the local level

WE WILL NOT ASSUME existence of smooth bump functions BUT the manifolds will be first-countable (every point has a countable neighbourhood basis) because our model spaces will be metrizable

Manifolds Bundles Examples Key Tools

Complete metric spaces

Metric space

A metric space is a space ${\mathscr M}$ endowed with a distance function

- $d \ : \mathscr{M} \times \mathscr{M} \to \mathbb{R}$
 - $d(f_0, f_1) = 0 \Leftrightarrow f_0 = f_1$
 - $d(f_0, f_1) = d(f_1, f_0)$
 - $d(f_0, f_1) \le d(f_0, f_2) + d(f_2, f_0)$

Cauchy sequence

A sequence $\{f_k\}_{k\in\mathbb{N}}$ in a metric space \mathscr{M} is a Cauchy sequence if for every $\varepsilon > 0$, there exists N > 0 such that $d(f_n, f_m) < \varepsilon$ for all n, m > N

Complete metric space

A metric space \mathscr{M} is said to be **complete** if any Cauchy sequence of elements in \mathscr{M} converges

Manifolds Bundles Examples Key Tools

What are the Model spaces of infinite-dim. geometry?

 $\textbf{Hilbert} \subset \mathsf{Banach} \subset \mathsf{Fr\acute{e}chet} \subset \mathsf{Locally} \ \mathsf{Convex} \ \mathsf{Spaces}$

Hilbert space H =**complete** vector space for the distance given by an inner product = $\langle \cdot, \cdot \rangle$: $H \times H \to \mathbb{R}^+$

- symmetric : $\langle x, y \rangle = \langle y, x \rangle$
- bilinear : $\langle x, y + \lambda z \rangle = \langle x, y \rangle + \lambda \langle x, z \rangle$
- non-negative : $\langle x, x \rangle \geq 0$
- definite : $\langle x, x \rangle = 0 \Rightarrow x = 0$

$H^* = H$ (Riesz Theorem).

Manifolds Bundles Examples Key Tools

What are the Model spaces of infinite-dim. geometry?

 $\mathsf{Hilbert} \subset \textbf{Banach} \subset \mathsf{Fr\acute{e}chet} \subset \mathsf{Locally} \ \mathsf{Convex} \ \mathsf{spaces}$

Banach space B = complete vector space for the distance given by a norm $= \| \cdot \| : B \to \mathbb{R}^+$

- triangle inequality : $||x + y|| \le ||x|| + ||y||$
- absolute homogeneity : $\|\lambda x\| = |\lambda| \|x\|$.
- non-negative : $||x|| \ge 0$
- definite : $||x|| = 0 \Rightarrow x = 0.$

$B^* = Banach space.$

Manifolds Bundles Examples Key Tools

What are the Model spaces of infinite-dim. geometry?

 $\mathsf{Hilbert} \subset \mathsf{Banach} \subset \textbf{Fréchet} \subset \mathsf{Locally} \ \mathsf{Convex} \ \mathsf{spaces}$

Fréchet space F = complete Hausdorff vector space for the distance $d : F \times F \to \mathbb{R}^+$ given by a countable family of semi-norms $\|\cdot\|_n$:

$$d(x,y) = \sum_{n=0}^{+\infty} \frac{1}{2^n} \frac{\|x - y\|_n}{1 + \|x - y\|_n}$$

 $F^* \neq$ Fréchet space if F not Banach, but locally convex $F^{**} =$ Fréchet space.

What are the Model spaces of infinite-dim. geometry?

 $\mathsf{Hilbert} \subset \mathsf{Banach} \subset \mathsf{Fr\acute{e}chet} \subset \textbf{Locally Convex spaces}$

Locally Convex spaces = Hausdorff topological vector space whose topology is given by a (possibly not countable) family of semi-norms.

References :

- The convenient setting of global analysis, Kriegl, Michor
- Diffeological spaces, Souriau
- Bastiani calculus on locally convex spaces, Bastiani
- Frölicher spaces, Frölicher
- Ringed spaces, Egeileh, Michel, and Wurzbacher
- Comparative smootheologies, Stacey

What are the smooth maps between the model spaces?

Differentiable function on \mathbb{R}^n

For a function $f : \mathscr{U} \subset \mathbb{R} \to \mathbb{R}$, there are 3 equivalent notions of been **differentiable** at $x \in \mathscr{U}$

•
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 exists and is finite

•
$$\exists L$$
 such that $\lim_{h\to 0} \frac{f(x+h)-f(x)-Lh}{h} = 0$

• there exists a function
$$g : \mathscr{U} \subset \mathbb{R} \to \mathbb{R}$$
, such that $f(x+h) = f(x) + f'(x)h + g(h)$ and $\lim_{h\to 0} \frac{g(h)}{h} = 0$

Remark

On $\mathbb R,$ a differentiable function is automatically continuous

Manifolds Bundles Examples Key Tools

In the Banach context

Fréchet differentiability in the Banach context

Let \mathscr{B}_1 and \mathscr{B}_2 be two Banach spaces. A map $P : \mathscr{U} \subset \mathscr{B}_1 \to \mathscr{B}_2$ is **Fréchet differentiable** at $f_0 \in \mathscr{B}_1$ if there exists a **continuous linear operator** $DP(f_0) : \mathscr{B}_1 \to \mathscr{B}_2$ such that

$$P(f_0 + h) = P(f_0) + DP(f_0)(h) + \|h\|_1 \cdot \varepsilon(h) \quad \text{with} \quad \lim_{h \to 0} \|\varepsilon(h)\|_2 = 0$$

Remark

No continuity is assumed in the definition of Fréchet differentiability, but **Fréchet differentiable at** $f_0 \Rightarrow$ **continuous at** f_0

Manifolds Bundles Examples Key Tools

In the Banach context

\mathscr{C}^1 in the Banach context

A map $P : \mathscr{U} \subset \mathscr{B}_1 \to \mathscr{B}_2$ between Banach spaces is \mathscr{C}^1 if it is Fréchet differentiable on \mathscr{U} and the derivative DP is continuous as a map from \mathscr{U} into the Banach space $L_c(\mathscr{B}_1, \mathscr{B}_2)$ of continuous linear operators from \mathscr{B}_1 to \mathscr{B}_2

Smooth maps between Banach spaces

By induction one defines the notion of smooth maps on Banach spaces.

Manifolds Bundles Examples Key Tools

In the Fréchet context

Directional derivative

Let \mathscr{F}_1 and \mathscr{F}_2 be two Fréchet spaces and $P : \mathscr{U} \subset \mathscr{F}_1 \to \mathscr{F}_2$ a **continuous** non-linear map. P admits a **derivative at** f_0 **in the direction** of $h \in \mathscr{F}_1$ if the following limit exists

$$DP(f_0)(h) = \lim_{t \to 0} \frac{P(f_0 + th) - P(f_0)}{t}$$

One says that P is differentiable at f_0 if it admits directional derivatives in every direction $h \in \mathscr{F}_1$

*C*¹ in the Fréchet context

A map $P : \mathscr{U} \subset \mathscr{F}_1 \to \mathscr{F}_2$ between Fréchet spaces is \mathscr{C}^1 if it is differentiable in \mathscr{U} and the derivative DP is continuous as a map from $\mathscr{U} \times \mathscr{F}_1$ into \mathscr{F}_2

Manifolds Bundles Examples Key Tools

Comparaison of the two notions of \mathscr{C}^1 -maps

Remarks

no linearity assumed but if P is \mathscr{C}^1 then DP(f)h is always linear in h

On a Banach space

- \mathscr{C}^1 in the Banach context $\Leftrightarrow \mathscr{C}^1$ in the Fréchet context
- \mathscr{C}^2 in the Fréchet context $\Leftrightarrow \mathscr{C}^1$ in the Banach context [Keller]

Taylor formula

If $P : \mathscr{U} \subseteq \mathscr{F} \to G$ is \mathscr{C}^2 and if the path connecting f and f + h lies in \mathscr{U} then

$$P(f + h) = P(f) + DP(f)(h) + \int_0^1 (1 - t) D^2 P(f + th)(h, h) dt$$

What is the Tangent vector ?

Kinetic tangent vector

A Kinetic tangent vector $X \in T_{f_0}\mathcal{M}$ is an equivalence classes of curves c(t), $c(0) = f_0$, where $c_1 \sim c_2$ if they have the same derivative at 0 in a chart.

Remark : Kinetic tangent vectors can be identified in a chart with elements of the model space.

Operational tangent vector

An operational tangent vector at $f_0 \in \mathcal{M}$ is a linear map $D: C^{\infty}_{f_0}(\mathcal{M}) \to \mathbb{R}$ satisfying Leibniz rule :

 $D(PQ)(f_0) = DP \ Q(f_0) + P(f_0) \ DQ$

Remark : Even on a Hilbert space there exists operational tangent vectors which are not Kinetic tangent vectors (cf Lecture 3)

What is a cotangent vector ?

(Kinetic) cotangent vector

A (kinetic) cotangent vector $F \in T^*_{f_0}\mathcal{M}$ is an continuous linear functional on the space of kinetic tangent vectors

Remark : Kinetic cotangent vectors can be identified in a chart with elements of the **continuous dual of the model space**. If the model space is a Fréchet space which is not a Banach space, the continuous dual of the model space is not a Fréchet space

What are the tangent bundle and cotangent bundles?

Tangent bundle

On a Fréchet manifold \mathscr{M} the set $T\mathscr{M}$ of all kinetic tangent vectors has a natural structure of smooth Fréchet manifold with canonical projection $\pi : T\mathscr{M} \to \mathscr{M}, X \in T_{f_0}\mathscr{M} \mapsto f_0$

Cotangent bundle

On a Banach manifold \mathscr{M} the set $T^*\mathscr{M}$ of all (kinetic) cotangent vectors has a natural structure of smooth Banach manifold with canonical projection $\pi : T^*\mathscr{M} \to \mathscr{M}$, $F \in T^*_{f_0}\mathscr{M} \mapsto f_0$

What is the problem with tensor products?

Universal property for algebraic tensor product

Let \mathfrak{g}_1 and \mathfrak{g}_2 be two \mathbb{K} -vector spaces. The **algebraic tensor product** $\mathfrak{g}_1 \otimes_a \mathfrak{g}_2$ of \mathfrak{g}_1 and \mathfrak{g}_2 is the unique (up to isomorphim of \mathbb{K} -vector spaces) \mathbb{K} -vector space such that there exists a bilinear mapping

 $B:\mathfrak{g}_1 imes\mathfrak{g}_2 o\mathfrak{g}_1\otimes_{a}\mathfrak{g}_2$

having the following **universal property** :

If $B_1 : \mathfrak{g}_1 \times \mathfrak{g}_2 \to \mathfrak{g}$ is any bilinear mapping into a \mathbb{K} -vector space \mathfrak{g} , then there exists a unique linear mapping $L : \mathfrak{g}_1 \otimes_a \mathfrak{g}_2 \to \mathfrak{g}$ such that $B_1 = L \circ B$.

Remark : The universal property implies in particular that the algebraic dual of the algebraic tensor product is the \mathbb{K} -vector space of \mathbb{K} -valued bilinear maps on $\mathfrak{g}_1 \times \mathfrak{g}_2$.

What is the problem with tensor products?

Grothendiek lists 14 different norms on tensor products of Banach spaces

Which norm on $\mathfrak{g}_1 \otimes_a \mathfrak{g}_2$ to complete it into a Banach space? the projective cross norm? the injective cross norm? or one of the 12 others?

Example :

For an Hilbert space \mathfrak{h} and its continous dual \mathfrak{h}^* , the injective tensor product of \mathfrak{h}^* and \mathfrak{h} is the Banach space of compact operators on \mathfrak{h} , whereas the projective tensor product is the Banach space of trace class operators on \mathfrak{h} .

Manifolds Bundles Examples Key Tools

Continuous Multilinear maps

In the Banach case, continuous multilinear maps forms a Banach space

For Banach spaces $\mathfrak{g}_1, \ldots, \mathfrak{g}_k$ and \mathfrak{h} , the space

$$L^k(\mathfrak{g}_1,\mathfrak{g}_2,\ldots\mathfrak{g}_k;\mathfrak{h})$$

of continuous *k*-**multilinear maps** from the product Banach space $\mathfrak{g}_1 \times \cdots \times \mathfrak{g}_k$ to the Banach space \mathfrak{h} is itself a Banach space

Symmetric Multilinear maps

For any Banach space \mathfrak{g} , a multilinear map $\mathbf{t} \in L^k(\mathfrak{g}, \ldots, \mathfrak{g}; \mathbb{K})$ is said to be **symmetric** if and only if

$$\mathbf{t}(e_1,\ldots,e_k)=\mathbf{t}(e_{\sigma(1)},\ldots,e_{\sigma(k)})$$

for any $e_1, \ldots e_k$ in g and any permutation σ in the group $\mathscr{S}(k)$ of all permutations of $\{1, \ldots, k\}$

Continuous Multilinear maps

Skew-symmetric Multilinear maps

For any Banach space \mathfrak{g} , a multilinear map $\mathbf{t} \in L^k(\mathfrak{g}, \ldots, \mathfrak{g}; \mathbb{K})$ is said to be **skew-symmetric** if and only if

$$\mathbf{t}(e_1,\ldots,e_k) = \operatorname{sign}(\sigma)\mathbf{t}(e_{\sigma(1)},\ldots,e_{\sigma(k)})$$

for any $e_1, \ldots e_k$ in \mathfrak{g} and any permutation σ of $\{1, \ldots, k\}$, where $\operatorname{sign}(\sigma)$ denotes the signature of σ .

The space $S^k \mathfrak{g}^*$ consisting of **symmetric multilinear maps** on a Banach space \mathfrak{g} is a closed subspace of $L^k(\mathfrak{g}, \ldots, \mathfrak{g}; \mathbb{K})$, hence a Banach space

The space $\Lambda^k \mathfrak{g}^*$ consisting of **skew-symmetric multilinear maps** on \mathfrak{g} is a closed subspace of $L^k(\mathfrak{g}, \ldots, \mathfrak{g}; \mathbb{K})$, hence a Banach space

Continuous Multilinear maps

Symmetric Multilinear maps on a Banach manifold

If \mathscr{M} is a Banach manifold, the space $S^k T^* \mathscr{M}$ of **symmetric multilinear maps** on $T \mathscr{M}$ has a natural structure of Banach manifold, and of vector bundle over \mathscr{M}

A section $g : \mathscr{M} \to T^*\mathscr{M}$ is called a symmetric tensor on \mathscr{M} .

Skew-symmetric Multilinear maps on a Banach manifold

If \mathscr{M} is a Banach manifold, the space $\Lambda^k T^* \mathscr{M}$ of **skew-symmetric multilinear maps** on $T \mathscr{M}$ has a natural structure of Banach manifold, and of vector bundle over \mathscr{M}

A section $\omega : \mathcal{M} \to T^*\mathcal{M}$ is called a **skew-symmetric tensor** on \mathcal{M} .

Manifolds Bundles Examples Key Tools

What is an infinite-dimensional Lie group ?

Fréchet Lie groups

A Fréchet Lie group is a Fréchet manifold \mathscr{G} with a group structure such that the multiplication map m and the inverse map inv are smooth

$$m : \mathscr{G} \times \mathscr{G} \to \mathscr{G}, m(g, h) = gh$$

inv :
$$\mathscr{G} \to \mathscr{G}$$
, inv $(g) = g^{-1}$

Manifolds Bundles Examples Key Tools

Examples

Fréchet Lie groups

- The group of diffeomorphims $\mathscr{D}(M)$ of a compact manifold M
- The group of volume preserving diffeomorphims $\mathscr{D}_{\mathrm{vol}}(M)$ of a compact Riemannian manifold M

Reference

- R.S. Hamilton, The inverse function Theorem of Nash and Moser
- J. Milnor, Remarks on infinite-dimensional Lie groups
- H. Glöckner, K.H. Neeb, Banach-Lie Quotients, Enlargibility, and Universal Complexifications
- M. Molitor, Remarks on the space of volume preserving embeddings
- B. Khesin, J. Lenells, G. Misiolek, S. Preston, *Curvature of Sobolev* metrics on Diffeomorphism groups

Examples from Geometry

Spheres

The sphere in a Hilbert space is a smooth Hilbert manifold

Remark : The sphere in a Banach space is not smooth unless the Banach space is an Hilbert space

Linear Grassmannians

The projective space of an Hilbert space is a Hilbert manifold The Grassmannian of p-dimensional subspaces in an Hilbert space is Hilbert manifold (p finite) The Grassmannian of subspaces in an Hilbert space with infinite dimension and codimension is a Banach manifold

Examples from Geometry

Restricted Linear Grassmannians

Let $\mathscr{H} = \mathscr{H}_+ \oplus \mathscr{H}_-$ be a decomposition of an Hilbert space into the sum of two closed infinite-dimensional orthogonal subspaces. The restricted Grassmannian $\operatorname{Gr}_{\operatorname{res}}(\mathscr{H})$ denotes the set of all closed subspaces W of \mathscr{H} such that the orthogonal projection $p_-: W \to \mathscr{H}_-$ belongs to some given Schatten class (compact operator, Hilbert-Schmidt, trace class operators,...), then one obtain a Grassmannian manifold modelled on the space of operator from \mathscr{H}_- to \mathscr{H}_+ in this given Schatten class.

Reference

- Pressley, Segal, Loop spaces
- T. Golinski, A. Odzijewicz, *Hierarchy of Hamilton equations on Banach Lie-Poisson spaces related to restricted Grassmannian*
- E. Andruchow, G. Larotonda, Hopf-Rinow Theorem in the Sato Grassmannian
- A.B.Tumpach, Banach Poisson-Lie groups and the Bruhat-Poisson structure of the restricted Grassmannian

Manifolds Bundles Examples Key Tools

Examples from Geometry

Manifolds of maps

The space of smooth maps from a compact manifold into a finite-dimensional manifold is a Fréchet manifold

Space of sections

The space of smooth section of a finite-dimensional vector bundle over a compact manifold is a Fréchet manifold

Examples from Geometry

Non-linear Grassmannians and non-linear Flags

The space of embeddings $N \hookrightarrow M$ from a compact manifold N into a finite-dimensional manifold M is a Fréchet manifold. More generally the space of flags $N_1 \subseteq N_2 \subseteq \cdots \subseteq N_k \subset M$ is a Fréchet manifold

Reference

- M. Bauer, M. Bruveris, P.W. Michor, *Overview of the Geometries of Shape Spaces and Diffeomorphism Groups*
- F. Gay-Balmaz, C. Vizman, Vortex sheets in ideal 3D fluids, coadjoint orbits, and characters
- S. Haller, C. Vizman, nonlinear Flag manifolds as coadjoint orbits

Manifolds Bundles Examples Key Tools

Examples from Geometry

Manifolds of curves

The space of H^1 curves from [0, 1] into a finite-dimensional Riemannian manifold M is a Hilbert manifold, and the critical points of the energy functional are the geodesics of M

Square Root Velocity Framework

Length one curves can be seen as points on the sphere of an Hilbert space.

Arc-length parameterized curves

The space of arc-length parameterized curves $c : [0, 1] \rightarrow \mathbb{R}^n$ is a Fréchet submanifold of the space of all parameterized curves.

Manifolds Bundles Examples Key Tools

Examples from Geometry

Reference

- W.P.A. Klingenberg, Riemannian Geometry
- S. Lahiri, D. Robinson, E. Klassen, *Precise Matching of PL Curves in RN in the Square Root Velocity Framework*
- A. Schmeding, *Manifolds of absolutely continuous curves and the square root velocity framework*
- E. Celledoni, S. Eidnes, A. Schmeding, *Shape analysis on homogeneous spaces: a generalised SRVT framework*
- S. Preston, A.B.Tumpach, *Quotient Elastic Metrics on the manifold* of arc-length parameterized plane curves

Manifolds Bundles Examples Key Tools

Shape spaces are non-linear manifolds

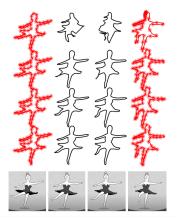
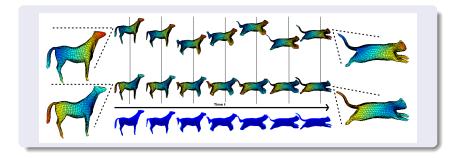


Figure: First line : linear interpolation between some parameterized ballerinas, second line : linear interpolation between arc-length parameterized ballerinas, third line : geodesic on a hilbert sphere, fourth line : improvement of third line, fifth line : ground truth

Manifolds Bundles Examples Key Tools

Examples from Shape Analysis



Pre-shape space $\mathscr{F} := \{f \text{ embedding } : \mathbb{S}^2 \to \mathbb{R}^3\} \subset \mathscr{C}^\infty(\mathbb{S}^2, \mathbb{R}^3)$ **Shape space** $\mathscr{S} := 2\text{-dimensional submanifolds of } \mathbb{R}^3$

Manifolds Bundles Examples Key Tools

What about genus 0 surfaces?

Question

Is there a canonical section of the fiber bundle of parameterized surfaces of genus 0?

Answer

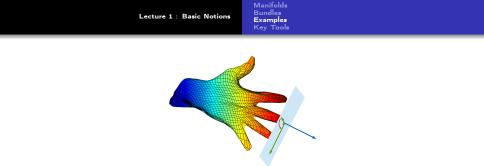
Modulo $PSL(2, \mathbb{C})$ yes.

Question

Is this section smooth?

Answer

I don't know...



Genus-0 surfaces of \mathbb{R}^3 are *Riemann surfaces*. Since they are compact and simply connected, the Uniformization Theorem says that they are conformally equivalent to the unit sphere. This means that, given a spherical surface, there exists a homeomorphism, called the *uniformization map*, which preserves the angles and transforms the unit sphere into the surface. The uniformization maps are parameterized by $PSL(2, \mathbb{C})$.

Examples from Gauge Theory

The group of gauge transformations is a Fréchet Lie group acting on the space of connections on a principal bundle over a closed surface

Given a closed surface endowed with a volume form, the space of compatible Riemannian structures is an infinite-dimensional symplectic manifold. The group of volume-preserving diffeomorphisms acts by push-forward and has a group-valued momentum map. Moreover the TeichmuÌller space and the moduli space of Riemann surfaces can be realized as symplectic orbit reduced spaces

Reference

- S.K. Donaldson, Nahm's Equations and the Classification of Monopoles
- T. Diez, T. S. Ratiu, Realizing the Teichmulller space as a symplectic quotient
- T. Diez, T. S. Ratiu, Group-valued momentum maps for actions of automorphism groups

Manifolds Bundles Examples Key Tools

What are the Tools from Functional Analysis?

Banach-Picard fixed point Theorem or Contraction Theorem

(E, d) complete metric space $f : E \to E \text{ contraction of } E : d(f(x), f(y)) \le kd(x, y) \text{ where } k \in (0, 1)$ $\Rightarrow \begin{cases} \exists ! x \in E, f(x) = x \\ \forall x_0 \in E, \text{ the sequence } x_{n+1} = f(x_n) \text{ converges to } x \end{cases}$

Manifolds Bundles Examples Key Tools

What are the Key Tools from Functional Analysis?

Hahn-Banach Theorem

E locally convex space $A \subset E$ a convex $x \in E, x \notin \overline{A}$

 $\Rightarrow \exists$ continuous functional $\ell : E \to \mathbb{R}$ with $\ell(x) \notin \overline{\ell(A)}$

Manifolds Bundles Examples Key Tools

What are the Tools from Functional Analysis?

Open mapping Theorem

 $\left\{ \begin{array}{ll} F \ \textit{Fréchet} \\ G \ \textit{Fréchet} \end{array} \right. \text{ or } \left\{ \begin{array}{ll} F \ \textit{webbed locally convex} \\ G \ \textit{inductive limit of Baire locally convex spaces} \end{array} \right.$

$\begin{array}{l} L \ : F \rightarrow G \ continuous, \ linear, \ and \ surjective \\ \Rightarrow L \ is \ open \end{array}$

What are the Tools from Functional Analysis?

Cauchy-Lipschitz Theorem in the Banach case

- $\bullet \ \mathscr{I} \subset \mathbb{R}$ be an interval containing 0
- ${\mathscr U}$ open set of a Banach space ${\mathscr B}$
- $P : \mathscr{I} \times \mathscr{U} \to \mathscr{B}$

such that

•
$$\|P(t,f)\| \leq C \quad \forall (t,f) \in \mathscr{I} \times \mathscr{U}$$

• $\|P(t, f_1) - P(t, f_0)\| \le C' \|f_1 - f_0\| \quad \forall t \in \mathscr{I}, \forall f_0, f_1 \in \mathscr{U}$

For any $f_0 \in \mathscr{U}$ we can find a neighboorhood $\mathscr{\widetilde{U}}$ of f_0 and an $\varepsilon > 0$ such that for any $f \in \mathscr{\widetilde{U}}$ the Cauchy problem

$$\frac{d}{dt}\phi(t,f) = P(t,\phi(t,f))$$

has a unique solution with initial condition $\phi(0, f) = f$ on $[-\varepsilon, \varepsilon]$. Moreover if P is \mathscr{C}^p , $t \to \phi(t, x)$ is \mathscr{C}^p for any $f \in \widetilde{\mathscr{U}}$

Manifolds Bundles Examples Key Tools

What are the Tools from Functional Analysis?

Cauchy Theorem in the Fréchet case

Let $P : \mathscr{U} \subset \mathscr{F} \to \mathscr{F}$ be a **smooth Banach map**. Then $\forall f_0 \in \mathscr{U}$, $\exists \widetilde{\mathscr{U}} \ni f_0 \text{ and } \varepsilon > 0 \text{ s.t. } \forall f \in \widetilde{\mathscr{U}}$

$$\frac{d}{dt}f = P(f)$$

has a unique solution with initial condition f(0) = f on $0 \le t \le \varepsilon$ depending smoothly on t and f.

Manifolds Bundles Examples Key Tools

What are the Tools from Functional Analysis?

Inverse function Theorem

Theorem

Let $f : \mathscr{U} \subset B_1 \to B_2$ be a \mathscr{C}^1 -map between **Banach** spaces. If Df(a) is invertible at $a \in \mathscr{U}$, then there exists an open neighborhood \mathscr{V}_a of $a \in \mathscr{U}$ and an open neighborhood $\mathscr{V}_{f(a)} \subset B_2$ such that $f : \mathscr{V}_a \to \mathscr{V}_{f(a)}$ is a \mathscr{C}^1 -diffeomorphism.

Counterexample : exp : $\operatorname{Lie}(\operatorname{Diff}(\mathbb{S}^1)) \to \operatorname{Diff}(\mathbb{S}^1)$ not locally onto.

Theorem (Nash-Moser)

Let $f : \mathscr{U} \subset F_1 \to F_2$ be a smooth tame map between **Fréchet** spaces. Suppose that the equation for the derivative Df(x)(h) = k has a unique solution h = L(x)k for all $x \in \mathscr{U}$ and $\forall k \in F_2$ and that the family of inverses $L : \mathscr{U} \times F_2 \to F_1$ is a smooth tame map. Then f is locally invertible and each local inverse is a smooth tame map.

Manifolds Bundles Examples Key Tools

What are the Tools from Functional Analysis?

Theorems :	Hilbert	Banach	Fréchet	Locally Convex
Banach-Picard	\checkmark	\checkmark	\checkmark	Х
Open Mapping	/	/	/	F webbed
			V	G limit of Baire
Hahn-Banach	\checkmark	\checkmark	\checkmark	\checkmark
Cauchy Theorem	\checkmark	\checkmark	Hamilton	Х
Inverse function	\checkmark	\checkmark	Nash-Moser	Х