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Why infinite-dimensional geometry?

At the backstage of finite-dimensional geometry

existence of geodesics on a finite-dimensional manifold is an
infinite-dimensional phenomenon

initial value problem or shooting : geodesic is a solution of a Cauchy
problem, i.e. a fixed point of a contraction in an appropriate
infinite-dimensional space of curves
2 boundary value problem: geodesic is a curve minimising an energy
functional on a infinite-dimesnional space of curves

natural objects on a finite-dimensional manifold are elements of an
infinite-dimensional space (vector fields, Riemannian metrics,
mesures...)
Each time one want to vary the geometry of a finite-dimensional
manifold, one ends up with a infinite-dimensional manifold (of
Riemannian metric, of connexions, of symplectic forms....)
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Why infinite-dimensional geometry?

What is not covered by these Lectures?
The convenient setting of global analysis, Andreas Kriegl and Peter W. Michor, volume
53 of Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, 1997.

Diffeological spaces, J.-M. Souriau. Groupes différentiels. In Differential geometrical
methods in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979),
volume 836 of Lecture Notes in Math., pages 91–128. Springer, Berlin, 1980.

Bastiani calculus on locally convex spaces, A. Bastiani, Applications différentiables et
variétés différentiables de dimension infinie, J. Analyse Math. 13 (1964):1–114.

Frölicher spaces, Alfred Frölicher. Smooth structures. In Category theory
(Gummersbach, 1981), volume 962 of Lecture Notes in Math., pages 69–81. Springer,
Berlin, 1982.

Ringed spaces, Egeileh, Michel, and Tilmann Wurzbacher. "Infinite-dimensional
manifolds as ringed spaces." Publications of the Research Institute for Mathematical
Sciences, vol. 53, no. 1, 2017.

Comparative smootheologies, Andrew Stacey, Theory and Applications of Categories,
Vol. 25, No. 4, 2011, pp. 64–117.

Differential calculus in locally convex spaces, Keller, H.H., Lecture Notes in
Mathematics, Vol. 417 (Springer-Verlag, Berlin-New York, 1974)
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Definition of an infinite-dimensional manifold
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Definition of an infinite-dimensional manifold

The notion of manifold is build out from the notion of SMOOTH maps
(or C k , or C w ) between MODEL SPACES, the crucial condition on the
set of smooth maps is the CHAIN RULE.

Alice Barbara Tumpach Infinite-dimensional Geometry : Theory and Applications



Lecture 1 : Basic Notions
Manifolds
Bundles
Examples
Key Tools

Charts and complete Atlas

Definition of a chart

Definition of an atlas

C k equivalent atlases

Manifold = Hausdorff topological space with an equivalence class of C k

atlases
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Charts and complete Atlas

Definition of a chart

A chart on a topological space M is a triple (U , ϕ,Fα) where U is an
open set in M and φ an homeomorphism from U to an open set in a
model topological vector space Fα.

Definition of an atlas
An atlas on a topological space M is a collection of charts
(Uα, ϕα,Fα)α∈I such that ∪α∈I Uα = M

Atlas of class C k

An atlas A = (Uα, ϕα,Fα)α∈I on M is of class C k if all transition
maps are C k -maps between the model topological vector spaces :
∀(Uα, ϕα,Fα) ∈ A and (Uβ , ϕβ ,Fβ) ∈ A such that Uα ∩Uβ 6= ∅
ϕα ◦ ϕ−1β : ϕβ (Uα ∩Uβ)→ ϕα (Uα ∩Uβ) is of class C k
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Charts and complete Atlas

C k equivalent atlases

Two atlases on a topological space M are said to be C k equivalent if
their union is of class C k

Manifolds of class C k

A manifold of class C k (k ≥ 0) is an Hausdorff topological space
endowed with an equivalence class of C k -atlases.

Hausdorff space

A topological space M is said to be Hausdorff if for any pair of distinct
points f0 6= f1 in M one can find two disjoints open sets U0 ∩U1 = ∅ in
M such that f0 ∈ U0 and f1 ∈ U1
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Remarks

On the global level

WE WILL NOT ASSUME that a manifold M is
paracompact (every open cover has an open refinement that is
locally finite)
admits smooth partitions of unity
second countability (the topology has a countable base)
separability (there exists a countable dense subset)
Lindelöf (every open cover has a countable subcover)

On the local level
WE WILL NOT ASSUME existence of smooth bump functions
BUT the manifolds will be first-countable (every point has a countable
neighbourhood basis) because our model spaces will be metrizable
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Complete metric spaces

Metric space

A metric space is a space M endowed with a distance function
d : M ×M → R

d(f0, f1) = 0⇔ f0 = f1

d(f0, f1) = d(f1, f0)

d(f0, f1) ≤ d(f0, f2) + d(f2, f0)

Cauchy sequence

A sequence {fk}k∈N in a metric space M is a Cauchy sequence if for
every ε > 0, there exists N > 0 suth that d(fn, fm) < ε for all n,m > N

Complete metric space

A metric space M is said to be complete if any Cauchy sequence of
elements in M converges
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What are the Model spaces of infinite-dim. geometry?

Hilbert ⊂ Banach ⊂ Fréchet ⊂ Locally Convex Spaces

Hilbert space H = complete vector space for the distance given by an
inner product = 〈·, ·〉 : H × H → R+

symmetric :〈x , y〉 = 〈y , x〉
bilinear : 〈x , y + λz〉 = 〈x , y〉+ λ〈x , z〉
non-negative : 〈x , x〉 ≥ 0
definite : 〈x , x〉 = 0⇒ x = 0

H∗ = H (Riesz Theorem).
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What are the Model spaces of infinite-dim. geometry?

Hilbert ⊂ Banach ⊂ Fréchet ⊂ Locally Convex spaces

Banach space B = complete vector space for the distance given by a
norm = ‖ · ‖ : B → R+

triangle inequality : ‖x + y‖ ≤ ‖x‖+ ‖y‖
absolute homogeneity : ‖λx‖ = |λ|‖x‖.
non-negative : ‖x‖ ≥ 0
definite : ‖x‖ = 0⇒ x = 0.

B∗ = Banach space.
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What are the Model spaces of infinite-dim. geometry?

Hilbert ⊂ Banach ⊂ Fréchet ⊂ Locally Convex spaces

Fréchet space F = complete Hausdorff vector space for the distance
d : F × F → R+ given by a countable family of semi-norms ‖ · ‖n :

d(x , y) =
+∞∑
n=0

1
2n

‖x − y‖n
1 + ‖x − y‖n

F ∗ 6= Fréchet space if F not Banach, but locally convex
F ∗∗ = Fréchet space.
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What are the Model spaces of infinite-dim. geometry?

Hilbert ⊂ Banach ⊂ Fréchet ⊂ Locally Convex spaces

Locally Convex spaces = Hausdorff topological vector space whose
topology is given by a (possibly not countable) family of semi-norms.

References :
The convenient setting of global analysis, Kriegl, Michor
Diffeological spaces, Souriau
Bastiani calculus on locally convex spaces, Bastiani
Frölicher spaces, Frölicher
Ringed spaces, Egeileh, Michel, and Wurzbacher
Comparative smootheologies, Stacey
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What are the smooth maps between the model spaces?

Differentiable function on Rn

For a function f : U ⊂ R→ R, there are 3 equivalent notions of been
differentiable at x ∈ U

f ′(x) = limh→0
f (x+h)−f (x)

h exists and is finite

∃L such that limh→0
f (x+h)−f (x)−Lh

h = 0
there exists a function g : U ⊂ R→ R, such that
f (x + h) = f (x) + f ′(x)h + g(h) and limh→0

g(h)
h = 0

Remark
On R, a differentiable function is automatically continuous

Alice Barbara Tumpach Infinite-dimensional Geometry : Theory and Applications



Lecture 1 : Basic Notions
Manifolds
Bundles
Examples
Key Tools

In the Banach context

Fréchet differentiability in the Banach context

Let B1 and B2 be two Banach spaces. A map P : U ⊂ B1 → B2 is
Fréchet differentiable at f0 ∈ B1 if there exists a continuous linear
operator DP(f0) : B1 → B2 such that

P(f0 + h) = P(f0) + DP(f0)(h) + ‖h‖1 · ε(h) with lim
h→0
‖ε(h)‖2 = 0

Remark
No continuity is assumed in the definition of Fréchet differentiability, but
Fréchet differentiable at f0 ⇒ continuous at f0
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In the Banach context

C 1 in the Banach context

A map P : U ⊂ B1 → B2 between Banach spaces is C 1 if it is Fréchet
differentiable on U and the derivative DP is continuous as a map from
U into the Banach space Lc(B1,B2) of continuous linear operators
from B1 to B2

Smooth maps between Banach spaces

By induction one defines the notion of smooth maps on Banach spaces.
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In the Fréchet context

Directional derivative
Let F1 and F2 be two Fréchet spaces and P : U ⊂ F1 → F2 a
continuous non-linear map. P admits a derivative at f0 in the
direction of h ∈ F1 if the following limit exists

DP(f0)(h) = lim
t→0

P(f0 + th)− P(f0)

t

One says that P is differentiable at f0 if it admits directional derivatives
in every direction h ∈ F1

C 1 in the Fréchet context

A map P : U ⊂ F1 → F2 between Fréchet spaces is C 1 if it is
differentiable in U and the derivative DP is continuous as a map from
U ×F1 into F2
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Comparaison of the two notions of C 1-maps

Remarks

no linearity assumed but if P is C 1 then DP(f )h is always linear in h

On a Banach space

C 1 in the Banach context ⇔ C 1 in the Fréchet context
C 2 in the Fréchet context ⇔ C 1 in the Banach context [Keller]

Taylor formula

If P : U ⊆ F → G is C 2 and if the path connecting f and f + h lies in
U then

P(f + h) = P(f ) + DP(f )(h) +

∫ 1

0
(1− t)D2P(f + th)(h, h)dt
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What is the Tangent vector ?

Kinetic tangent vector

A Kinetic tangent vector X ∈ Tf0M is an equivalence classes of curves
c(t), c(0) = f0, where c1 ∼ c2 if they have the same derivative at 0 in a
chart.

Remark : Kinetic tangent vectors can be identified in a chart with
elements of the model space.

Operational tangent vector

An operational tangent vector at f0 ∈M is a linear map
D : C∞f0 (M )→ R satisfying Leibniz rule :

D(PQ)(f0) = DP Q(f0) + P(f0) DQ

Remark : Even on a Hilbert space there exists operational tangent
vectors which are not Kinetic tangent vectors (cf Lecture 3)
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What is a cotangent vector ?

(Kinetic) cotangent vector

A (kinetic) cotangent vector F ∈ T ∗f0M is an continuous linear functional
on the space of kinetic tangent vectors

Remark : Kinetic cotangent vectors can be identified in a chart with
elements of the continuous dual of the model space. If the model
space is a Fréchet space which is not a Banach space, the continuous
dual of the model space is not a Fréchet space
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What are the tangent bundle and cotangent bundles?

Tangent bundle

On a Fréchet manifold M the set TM of all kinetic tangent vectors has
a natural structure of smooth Fréchet manifold with canonical projection
π : TM →M , X ∈ Tf0M 7→ f0

Cotangent bundle

On a Banach manifold M the set T ∗M of all (kinetic) cotangent
vectors has a natural structure of smooth Banach manifold with
canonical projection π : T ∗M →M , F ∈ T ∗f0M 7→ f0
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What is the problem with tensor products?

Universal property for algebraic tensor product

Let g1 and g2 be two K-vector spaces. The algebraic tensor product
g1 ⊗a g2 of g1 and g2 is the unique (up to isomorphim of K-vector
spaces) K-vector space such that there exists a bilinear mapping

B : g1 × g2 → g1 ⊗a g2

having the following universal property :

If B1 : g1 × g2 → g is any bilinear mapping into a K-vector space g, then
there exists a unique linear mapping L : g1 ⊗a g2 → g such that
B1 = L ◦ B.

Remark : The universal property implies in particular that the algebraic
dual of the algebraic tensor product is the K-vector space of K-valued
bilinear maps on g1 × g2.
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What is the problem with tensor products?

Grothendiek lists 14 different norms on tensor products of Banach spaces

Which norm on g1 ⊗a g2 to complete it into a Banach space?
the projective cross norm?
the injective cross norm?
or one of the 12 others?

Example :

For an Hilbert space h and its continous dual h∗, the injective tensor
product of h∗ and h is the Banach space of compact operators on h,
whereas the projective tensor product is the Banach space of trace class
operators on h.
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Continuous Multilinear maps

In the Banach case, continuous multilinear maps forms a Banach space

For Banach spaces g1, . . . , gk and h, the space

Lk(g1, g2, . . . gk ; h)

of continuous k-multilinear maps from the product Banach space
g1 × · · · × gk to the Banach space h is itself a Banach space

Symmetric Multilinear maps

For any Banach space g, a multilinear map t ∈ Lk(g, . . . , g;K) is said to
be symmetric if and only if

t(e1, . . . , ek) = t(eσ(1), . . . , eσ(k))

for any e1, . . . ek in g and any permutation σ in the group S (k) of all
permutations of {1, . . . , k}
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Continuous Multilinear maps

Skew-symmetric Multilinear maps

For any Banach space g, a multilinear map t ∈ Lk(g, . . . , g;K) is said to
be skew-symmetric if and only if

t(e1, . . . , ek) = sign(σ)t(eσ(1), . . . , eσ(k))

for any e1, . . . ek in g and any permutation σ of {1, . . . , k}, where
sign(σ) denotes the signature of σ.

The space Skg∗ consisting of symmetric multilinear maps on a Banach
space g is a closed subspace of Lk(g, . . . , g;K), hence a Banach space

The space Λkg∗ consisting of skew-symmetric multilinear maps on g is
a closed subspace of Lk(g, . . . , g;K), hence a Banach space
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Continuous Multilinear maps

Symmetric Multilinear maps on a Banach manifold

If M is a Banach manifold, the space SkT ∗M of symmetric
multilinear maps on TM has a natural structure of Banach manifold,
and of vector bundle over M

A section g : M → T ∗M is called a symmetric tensor on M .

Skew-symmetric Multilinear maps on a Banach manifold

If M is a Banach manifold, the space ΛkT ∗M of skew-symmetric
multilinear maps on TM has a natural structure of Banach manifold,
and of vector bundle over M

A section ω : M → T ∗M is called a skew-symmetric tensor on M .

Alice Barbara Tumpach Infinite-dimensional Geometry : Theory and Applications



Lecture 1 : Basic Notions
Manifolds
Bundles
Examples
Key Tools

What is an infinite-dimensional Lie group ?

Fréchet Lie groups

A Fréchet Lie group is a Fréchet manifold G with a group structure such
that the multiplication map m and the inverse map inv are smooth

m : G × G → G ,m(g , h) = gh

inv : G → G , inv(g) = g−1
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Examples

Fréchet Lie groups

The group of diffeomorphims D(M) of a compact manifold M

The group of volume preserving diffeomorphims Dvol(M) of a
compact Riemannian manifold M

Reference
R.S. Hamilton, The inverse function Theorem of Nash and Moser
J. Milnor, Remarks on infinite-dimensional Lie groups
H. Glöckner, K.H. Neeb, Banach-Lie Quotients, Enlargibility, and
Universal Complexifications
M. Molitor, Remarks on the space of volume preserving embeddings
B. Khesin, J. Lenells, G. Misiolek, S. Preston, Curvature of Sobolev
metrics on Diffeomorphism groups
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Examples from Geometry

Spheres

The sphere in a Hilbert space is a smooth Hilbert manifold

Remark : The sphere in a Banach space is not smooth unless the
Banach space is an Hilbert space

Linear Grassmannians
The projective space of an Hilbert space is a Hilbert manifold
The Grassmannian of p-dimensional subspaces in an Hilbert space is
Hilbert manifold (p finite)
The Grassmannian of subspaces in an Hilbert space with infinite
dimension and codimension is a Banach manifold
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Examples from Geometry

Restricted Linear Grassmannians
Let H = H+ ⊕H− be a decomposition of an Hilbert space into the
sum of two closed infinite-dimensional orthogonal subspaces. The
restricted Grassmannian Grres(H ) denotes the set of all closed subspaces
W of H such that the orthogonal projection p− : W →H− belongs to
some given Schatten class (compact operator, Hilbert-Schmidt, trace
class operators,...), then one obtain a Grassmannian manifold modelled
on the space of operator from H− to H+ in this given Schatten class.

Reference

Pressley, Segal, Loop spaces

T. Golinski, A. Odzijewicz, Hierarchy of Hamilton equations on Banach
Lie-Poisson spaces related to restricted Grassmannian

E. Andruchow, G. Larotonda, Hopf-Rinow Theorem in the Sato Grassmannian

A.B.Tumpach, Banach Poisson-Lie groups and the Bruhat-Poisson structure of
the restricted Grassmannian
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Examples from Geometry

Manifolds of maps

The space of smooth maps from a compact manifold into a
finite-dimensional manifold is a Fréchet manifold

Space of sections

The space of smooth section of a finite-dimensional vector bundle over a
compact manifold is a Fréchet manifold
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Examples from Geometry

Non-linear Grassmannians and non-linear Flags

The space of embeddings N ↪→ M from a compact manifold N into a
finite-dimensional manifold M is a Fréchet manifold. More generally the
space of flags N1 ⊆ N2 ⊆ · · · ⊆ Nk ⊂ M is a Fréchet manifold

Reference
M. Bauer, M. Bruveris, P.W. Michor, Overview of the Geometries of
Shape Spaces and Diffeomorphism Groups
F. Gay-Balmaz, C. Vizman, Vortex sheets in ideal 3D fluids,
coadjoint orbits, and characters
S. Haller, C. Vizman, nonlinear Flag manifolds as coadjoint orbits
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Examples from Geometry

Manifolds of curves

The space of H1 curves from [0, 1] into a finite-dimensional Riemannian
manifold M is a Hilbert manifold, and the critical points of the energy
functional are the geodesics of M

Square Root Velocity Framework

Length one curves can be seen as points on the sphere of an Hilbert
space.

Arc-length parameterized curves

The space of arc-length parameterized curves c : [0, 1]→ Rn is a Fréchet
submanifold of the space of all parameterized curves.

Alice Barbara Tumpach Infinite-dimensional Geometry : Theory and Applications
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Examples from Geometry

Reference
W.P.A. Klingenberg, Riemannian Geometry
S. Lahiri, D. Robinson, E. Klassen, Precise Matching of PL Curves in
RN in the Square Root Velocity Framework
A. Schmeding, Manifolds of absolutely continuous curves and the
square root velocity framework
E. Celledoni, S. Eidnes, A. Schmeding, Shape analysis on
homogeneous spaces: a generalised SRVT framework
S. Preston, A.B.Tumpach, Quotient Elastic Metrics on the manifold
of arc-length parameterized plane curves
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Shape spaces are non-linear manifolds

Figure: First line : linear interpolation between some parameterized ballerinas, second line :
linear interpolation between arc-length parameterized ballerinas, third line : geodesic on a
hilbert sphere, fourth line : improvement of third line, fifth line : ground truth
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Examples from Shape Analysis

Pre-shape space F := {f embedding : S2 → R3} ⊂ C∞(S2,R3)
Shape space S := 2-dimensional submanifolds of R3
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What about genus 0 surfaces?

Question
Is there a canonical section of the fiber bundle of parameterized surfaces
of genus 0?

Answer

Modulo PSL(2,C) yes.

Question
Is this section smooth?

Answer
I don’t know...
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Figure: Scalar product on the tangent plan to the tip of the middle finger of a hand.

Genus-0 surfaces of R3 are Riemann surfaces. Since they are compact and
simply connected, the Uniformization Theorem says that they are conformally
equivalent to the unit sphere. This means that, given a spherical surface, there
exists a homeomorphism, called the uniformization map, which preserves the
angles and transforms the unit sphere into the surface. The uniformization
maps are parameterized by PSL(2,C).
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Examples from Gauge Theory

The group of gauge transformations is a Fréchet Lie group acting on the
space of connections on a principal bundle over a closed surface

Given a closed surface endowed with a volume form, the space of
compatible Riemannian structures is an infinite-dimensional symplectic
manifold. The group of volume-preserving diffeomorphisms acts by
push-forward and has a group-valued momentum map. Moreover the
TeichmuÌller space and the moduli space of Riemann surfaces can be
realized as symplectic orbit reduced spaces

Reference

S.K. Donaldson, Nahm’s Equations and the Classification of Monopoles

T. Diez, T. S. Ratiu, Realizing the TeichmuÌller space as a symplectic quotient

T. Diez, T. S. Ratiu, Group-valued momentum maps for actions of
automorphism groups
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What are the Tools from Functional Analysis?

Banach-Picard fixed point Theorem or Contraction Theorem

(E , d) complete metric space
f : E → E contraction of E : d(f (x), f (y)) ≤ kd(x , y) where k ∈ (0, 1)

⇒
{
∃ ! x ∈ E , f (x) = x
∀x0 ∈ E , the sequence xn+1 = f (xn) converges to x
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What are the Key Tools from Functional Analysis?

Hahn-Banach Theorem
E locally convex space
A ⊂ E a convex
x ∈ E , x /∈ A

⇒ ∃ continuous functional ` : E → R with `(x) /∈ `(A)

Alice Barbara Tumpach Infinite-dimensional Geometry : Theory and Applications



Lecture 1 : Basic Notions
Manifolds
Bundles
Examples
Key Tools

What are the Tools from Functional Analysis?

Open mapping Theorem{
F Fréchet
G Fréchet or

{
F webbed locally convex
G inductive limit of Baire locally convex spaces

L : F → G continuous, linear, and surjective
⇒ L is open
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What are the Tools from Functional Analysis?

Cauchy-Lipschitz Theorem in the Banach case

I ⊂ R be an interval containing 0
U open set of a Banach space B

P : I ×U → B

such that
‖P(t, f )‖ ≤ C ∀(t, f ) ∈ I ×U

‖P(t, f1)− P(t, f0)‖ ≤ C ′‖f1 − f0‖ ∀t ∈ I ,∀f0, f1 ∈ U

For any f0 ∈ U we can find a neighboorhood Ũ of f0 and an ε > 0 such
that for any f ∈ Ũ the Cauchy problem

d

dt
φ(t, f ) = P(t, φ(t, f ))

has a unique solution with initial condition φ(0, f ) = f on [−ε, ε].
Moreover if P is C p, t → φ(t, x) is C p for any f ∈ Ũ
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What are the Tools from Functional Analysis?

Cauchy Theorem in the Fréchet case

Let P : U ⊂ F → F be a smooth Banach map. Then ∀f0 ∈ U ,
∃Ũ 3 f0 and ε > 0 s.t. ∀f ∈ Ũ

d

dt
f = P(f )

has a unique solution with initial condition f (0) = f on 0 ≤ t ≤ ε
depending smoothly on t and f .
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What are the Tools from Functional Analysis?

Inverse function Theorem

Theorem

Let f : U ⊂ B1 → B2 be a C 1-map between Banach spaces. If Df (a) is
invertible at a ∈ U , then there exists an open neighborhood Va of a ∈ U
and an open neighborhood Vf (a) ⊂ B2 suth that f : Va → Vf (a) is a
C 1-diffeomorphism.

Counterexample : exp : Lie(Diff(S1))→ Diff(S1) not locally onto.

Theorem (Nash-Moser)

Let f : U ⊂ F1 → F2 be a smooth tame map between Fréchet spaces.
Suppose that the equation for the derivative Df (x)(h) = k has a unique
solution h = L(x)k for all x ∈ U and ∀k ∈ F2 and that the family of
inverses L : U × F2 → F1 is a smooth tame map. Then f is locally
invertible and each local inverse is a smooth tame map.
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What are the Tools from Functional Analysis?

Theorems : Hilbert Banach Fréchet Locally Convex
Banach-Picard

√ √ √
X

Open Mapping
√ √ √ F webbed

G limit of Baire
Hahn-Banach

√ √ √ √

Cauchy Theorem
√ √

Hamilton X
Inverse function

√ √
Nash-Moser X
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