Stochastic processes on surfaces in 3D contact sub-Riemannian manifolds

Talk by Karen Habermann on joint work with Davide Barilari, Ugo Boscain and Daniele Cannarsa

arXiv:2004.13700

(to appear in Annales de l'Institut Henri Poincaré, Probabilités et Statistiques)

15th International Young Researchers Workshop on Geometry, Mechanics, and Control

lacktriangleq M three-dimensional smooth manifold,

- ▶ M three-dimensional smooth manifold,
- ightharpoonup D contact structure on M,

- ▶ *M* three-dimensional smooth manifold,
- ▶ D contact structure on M, that is, $D = \ker \omega$ for one-form ω on M with $\omega \wedge d\omega \neq 0$,

- ▶ *M* three-dimensional smooth manifold,
- ▶ D contact structure on M, that is, $D = \ker \omega$ for one-form ω on M with $\omega \wedge d\omega \neq 0$,
- ▶ g smooth fibre inner product on D,

- M three-dimensional smooth manifold,
- ▶ D contact structure on M, that is, $D = \ker \omega$ for one-form ω on M with $\omega \wedge d\omega \neq 0$,
- g smooth fibre inner product on D,
- $lackbox{ }(D,g)$ sub-Riemannian structure on M

- M three-dimensional smooth manifold,
- ▶ D contact structure on M, that is, $D = \ker \omega$ for one-form ω on M with $\omega \wedge d\omega \neq 0$,
- ▶ g smooth fibre inner product on D,
- $lackbox{ } (D,g)$ sub-Riemannian structure on M

- M three-dimensional smooth manifold,
- ▶ D contact structure on M, that is, $D = \ker \omega$ for one-form ω on M with $\omega \wedge \mathrm{d}\omega \neq 0$,
- g smooth fibre inner product on D,
- $lackbox{}(D,g)$ sub-Riemannian structure on M,
- ightharpoonup S orientable surface embedded in M

▶ *M* three-dimensional smooth manifold,

- ▶ M three-dimensional smooth manifold,
- lacksquare X_1 and X_2 two smooth vector fields on M such that $X_1, X_2, [X_1, X_2]$ are linearly independent everywhere,

- ▶ M three-dimensional smooth manifold,
- ▶ X_1 and X_2 two smooth vector fields on M such that $X_1, X_2, [X_1, X_2]$ are linearly independent everywhere,
 - ▶ D distribution spanned by X_1 and X_2 ,

- ▶ M three-dimensional smooth manifold,
- ▶ X_1 and X_2 two smooth vector fields on M such that $X_1, X_2, [X_1, X_2]$ are linearly independent everywhere,
 - ▶ D distribution spanned by X_1 and X_2 ,
 - g given by requiring (X_1, X_2) to be an orthonormal frame,

- M three-dimensional smooth manifold,
- $ightharpoonup X_1$ and X_2 two smooth vector fields on M such that $X_1, X_2, [X_1, X_2]$ are linearly independent everywhere,
 - ▶ D distribution spanned by X_1 and X_2 ,
 - g given by requiring (X_1, X_2) to be an orthonormal frame,
- ▶ X₀ the unique vector field on M such that

$$[X_1, X_2] = X_0 + c_{12}^1 X_1 + c_{12}^2 X_2$$

- M three-dimensional smooth manifold,
- lacksquare X_1 and X_2 two smooth vector fields on M such that $X_1, X_2, [X_1, X_2]$ are linearly independent everywhere,
 - ▶ D distribution spanned by X_1 and X_2 ,
 - g given by requiring (X_1, X_2) to be an orthonormal frame,
- ▶ X₀ the unique vector field on M such that

$$[X_1, X_2] = X_0 + c_{12}^1 X_1 + c_{12}^2 X_2$$

▶ X_0 the Reeb vector field for the contact form ω normalised such that $d\omega|_D = -\operatorname{vol}_g$,

- M three-dimensional smooth manifold,
- lacksquare X_1 and X_2 two smooth vector fields on M such that $X_1, X_2, [X_1, X_2]$ are linearly independent everywhere,
 - ▶ D distribution spanned by X_1 and X_2 ,
 - g given by requiring (X_1, X_2) to be an orthonormal frame,
- ▶ X₀ the unique vector field on M such that

$$[X_1, X_2] = X_0 + c_{12}^1 X_1 + c_{12}^2 X_2$$

- ▶ X_0 the Reeb vector field for the contact form ω normalised such that $\mathbf{d}\omega|_D = -\mathbf{vol}_q$,
- ightharpoonup S embedded surface in M given by

$$S = \{x \in M : u(x) = 0\}$$
 for $u \in C^2(M)$ with $du \neq 0$ on S

- M three-dimensional smooth manifold,
- ▶ X_1 and X_2 two smooth vector fields on M such that $X_1, X_2, [X_1, X_2]$ are linearly independent everywhere,
 - ▶ D distribution spanned by X_1 and X_2 ,
 - g given by requiring (X_1, X_2) to be an orthonormal frame,
- ▶ X₀ the unique vector field on M such that

$$[X_1, X_2] = X_0 + c_{12}^1 X_1 + c_{12}^2 X_2$$

- ▶ X_0 the Reeb vector field for the contact form ω normalised such that $\mathbf{d}\omega|_D = -\operatorname{vol}_q$,
- ightharpoonup S embedded surface in M given by

$$S = \{x \in M : u(x) = 0\}$$
 for $u \in C^2(M)$ with $du \neq 0$ on S

Set $\Gamma(S)$ of characteristic points on S

$$x\in\Gamma(S)$$
 if and only if $(X_1u)(x)=(X_2u)(x)=0$

Set $\Gamma(S)$ of characteristic points on S

$$x \in \Gamma(S)$$
 if and only if $(X_1u)(x) = (X_2u)(x) = 0$

Construct limiting operator Δ_0 on surface $S \setminus \Gamma(S)$

Set $\Gamma(S)$ of characteristic points on S

$$x \in \Gamma(S)$$
 if and only if $(X_1u)(x) = (X_2u)(x) = 0$

Construct limiting operator Δ_0 on surface $S \setminus \Gamma(S)$

▶ family of Riemannian manifolds (S,g_{ε}) , for $\varepsilon>0$, induced by the Riemannian approximations obtained through requiring $(X_1,X_2,\sqrt{\varepsilon}X_0)$ to be a global orthonormal frame,

Set $\Gamma(S)$ of characteristic points on S

$$x \in \Gamma(S)$$
 if and only if $(X_1u)(x) = (X_2u)(x) = 0$

Construct limiting operator Δ_0 on surface $S \setminus \Gamma(S)$

- ▶ family of Riemannian manifolds (S, g_{ε}) , for $\varepsilon > 0$, induced by the Riemannian approximations obtained through requiring $(X_1, X_2, \sqrt{\varepsilon}X_0)$ to be a global orthonormal frame,
- family of Laplace–Beltrami operators $\Delta_{arepsilon}$

Set $\Gamma(S)$ of characteristic points on S

$$x\in\Gamma(S)$$
 if and only if $(X_1u)(x)=(X_2u)(x)=0$

Construct limiting operator Δ_0 on surface $S \setminus \Gamma(S)$

- ▶ family of Riemannian manifolds (S,g_{ε}) , for $\varepsilon>0$, induced by the Riemannian approximations obtained through requiring $(X_1,X_2,\sqrt{\varepsilon}X_0)$ to be a global orthonormal frame,
- family of Laplace–Beltrami operators $\Delta_{arepsilon}$

Theorem (Barilari, Boscain, Cannarsa, H)

For $f \in C_c^2(S \setminus \Gamma(S))$, we have

$$\Delta_{\varepsilon}f \to \Delta_0 f$$

uniformly on $S \setminus \Gamma(S)$ as $\varepsilon \to 0$.

For $f \in C_c^2(S \setminus \Gamma(S))$, we have

$$\Delta_{\varepsilon}f \to \Delta_0 f$$

uniformly on $S \setminus \Gamma(S)$ as $\varepsilon \to 0$.

For $f \in C_c^2(S \setminus \Gamma(S))$, we have

$$\Delta_{\varepsilon}f \to \Delta_0 f$$

uniformly on $S \setminus \Gamma(S)$ as $\varepsilon \to 0$.

The limiting operator is given by

$$\Delta_0 = \widehat{X}_S^2 + b\widehat{X}_S \; ,$$

For $f \in C_c^2(S \setminus \Gamma(S))$, we have

$$\Delta_{\varepsilon}f \to \Delta_0 f$$

uniformly on $S \setminus \Gamma(S)$ as $\varepsilon \to 0$.

The limiting operator is given by

$$\Delta_0 = \widehat{X}_S^2 + b\widehat{X}_S \; ,$$

where

$$\widehat{X}_S = \frac{(X_2 u) X_1 - (X_1 u) X_2}{\sqrt{(X_1 u)^2 + (X_2 u)^2}}$$

For $f \in C_c^2(S \setminus \Gamma(S))$, we have

$$\Delta_{\varepsilon}f \to \Delta_0 f$$

uniformly on $S \setminus \Gamma(S)$ as $\varepsilon \to 0$.

The limiting operator is given by

$$\Delta_0 = \widehat{X}_S^2 + b\widehat{X}_S ,$$

where

$$\widehat{X}_S = \frac{(X_2 u) X_1 - (X_1 u) X_2}{\sqrt{(X_1 u)^2 + (X_2 u)^2}} \quad \text{and} \quad b = \frac{X_0 u}{\sqrt{(X_1 u)^2 + (X_2 u)^2}} \; .$$

The limiting operator is given by

$$\Delta_0 = \widehat{X}_S^2 + b\widehat{X}_S \;,$$

where

$$\widehat{X}_S = \frac{(X_2 u) X_1 - (X_1 u) X_2}{\sqrt{(X_1 u)^2 + (X_2 u)^2}} \quad \text{and} \quad b = \frac{X_0 u}{\sqrt{(X_1 u)^2 + (X_2 u)^2}} \; .$$

The limiting operator is given by

$$\Delta_0 = \widehat{X}_S^2 + b\widehat{X}_S \;,$$

where

$$\widehat{X}_S = \frac{(X_2 u) X_1 - (X_1 u) X_2}{\sqrt{(X_1 u)^2 + (X_2 u)^2}} \quad \text{and} \quad b = \frac{X_0 u}{\sqrt{(X_1 u)^2 + (X_2 u)^2}} \; .$$

Proposition (Barilari, Boscain, Cannarsa, H)

Let K_{ε} be the Gaussian curvature of the Riemannian manifold $(S,g_{\varepsilon}).$ We have

$$K_0 := \lim_{\varepsilon \to 0} K_{\varepsilon} = -\widehat{X}_S(b) - b^2$$

uniformly on compact subsets of $S \setminus \Gamma(S)$.

The limiting operator is given by

$$\Delta_0 = \widehat{X}_S^2 + b\widehat{X}_S \; ,$$

where

$$\widehat{X}_S = \frac{(X_2 u) X_1 - (X_1 u) X_2}{\sqrt{(X_1 u)^2 + (X_2 u)^2}} \quad \text{and} \quad b = \frac{X_0 u}{\sqrt{(X_1 u)^2 + (X_2 u)^2}} \; .$$

Proposition (Barilari, Boscain, Cannarsa, H)

Let K_{ε} be the Gaussian curvature of the Riemannian manifold $(S,g_{\varepsilon}).$ We have

$$K_0 := \lim_{\varepsilon \to 0} K_{\varepsilon} = -\widehat{X}_S(b) - b^2$$

uniformly on compact subsets of $S \setminus \Gamma(S)$.

Notion of intrinsic Gaussian curvature K_0 for the surface S

Example: Paraboloid $z=a\left(x^2+y^2\right)$ in the Heisenberg group

Example: Paraboloid $z=a\left(x^2+y^2\right)$ in the Heisenberg group

Characteristic foliation described by logarithmic spirals

Example: Paraboloid $z = a(x^2 + y^2)$ in the Heisenberg group

Characteristic foliation described by logarithmic spirals

In coordinates (s,ψ) with s>0 and $\psi\in[0,2\pi)$ on $S\setminus\Gamma(S)$

$$\widehat{X}_S = \frac{\partial}{\partial s}$$
 and $b(s, \psi) = \frac{2}{s}$,

Example: Paraboloid $z = a(x^2 + y^2)$ in the Heisenberg group

Characteristic foliation described by logarithmic spirals

In coordinates (s,ψ) with s>0 and $\psi\in[0,2\pi)$ on $S\setminus\Gamma(S)$

$$\widehat{X}_S = \frac{\partial}{\partial s}$$
 and $b(s, \psi) = \frac{2}{s}$,

so

$$\Delta_0 = \frac{\partial^2}{\partial s^2} + \frac{2}{s} \frac{\partial}{\partial s} .$$

Example: Paraboloid $z = a(x^2 + y^2)$ in the Heisenberg group

Characteristic foliation described by logarithmic spirals

In coordinates (s, ψ) with s > 0 and $\psi \in [0, 2\pi)$ on $S \setminus \Gamma(S)$

$$\widehat{X}_S = rac{\partial}{\partial s}$$
 and $b(s,\psi) = rac{2}{s}$,

SO

$$\frac{1}{2}\Delta_0 = \frac{1}{2}\frac{\partial^2}{\partial s^2} + \frac{1}{s}\frac{\partial}{\partial s} .$$

Example: Sphere $x^2 + y^2 + z^2 = a^2$ in the Heisenberg group

Example: Sphere $x^2 + y^2 + z^2 = a^2$ in the Heisenberg group

Characteristic foliation described by loxodromes

Example: Sphere $x^2 + y^2 + z^2 = a^2$ in the Heisenberg group

Characteristic foliation described by loxodromes

In coordinates (s, φ) on $S \setminus \Gamma(S)$

$$\frac{1}{2}\Delta_0 = \frac{1}{2}\frac{\partial^2}{\partial s^2} + \left(\cot\left(\theta(s)\right)\frac{\mathrm{d}\theta}{\mathrm{d}s}\right)\frac{\partial}{\partial s} ,$$

where $\varphi \in [0, 2\pi)$ and s is given in terms of the polar angle θ as a multiple of an elliptic integral of the second kind.

Bessel process of order 3 has generator

$$\frac{1}{2}\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} \quad \text{for } r > 0$$

Bessel process of order 3 has generator

$$\frac{1}{2}\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} \quad \text{for } r > 0$$

▶ Legendre process of order 3 has generator

$$\frac{1}{2}\frac{\partial^2}{\partial\theta^2} + k\cot(k\theta)\frac{\partial}{\partial\theta} \quad \text{for } \theta \in \left(0, \frac{\pi}{k}\right)$$

Bessel process of order 3 has generator

$$\frac{1}{2}\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} \quad \text{for } r > 0$$

▶ Legendre process of order 3 has generator

$$\frac{1}{2}\frac{\partial^2}{\partial\theta^2} + k\cot(k\theta)\frac{\partial}{\partial\theta} \quad \text{for } \theta \in \left(0, \frac{\pi}{k}\right)$$

▶ hyperbolic Bessel process of order 3 has generator

$$\frac{1}{2}\frac{\partial^2}{\partial r^2} + k \coth(kr)\frac{\partial}{\partial r} \quad \text{for } r > 0$$

Criterion for accessibility of characteristic points

Criterion for accessibility of characteristic points in terms of

$$\operatorname{Hess} u = \begin{pmatrix} X_1 X_1 u & X_1 X_2 u \\ X_2 X_1 u & X_2 X_2 u \end{pmatrix}$$

Criterion for accessibility of characteristic points in terms of

$$\operatorname{Hess} u = \begin{pmatrix} X_1 X_1 u & X_1 X_2 u \\ X_2 X_1 u & X_2 X_2 u \end{pmatrix}$$

Definition

Characteristic point $x \in \Gamma(S)$ is called

elliptic if $\det((\operatorname{Hess} u)(x)) > 0$,

hyperbolic if $\det((\operatorname{Hess} u)(x)) < 0$.

Criterion for accessibility of characteristic points in terms of

$$\operatorname{Hess} u = \begin{pmatrix} X_1 X_1 u & X_1 X_2 u \\ X_2 X_1 u & X_2 X_2 u \end{pmatrix}$$

Definition

Characteristic point $x \in \Gamma(S)$ is called

elliptic if $\det((\operatorname{Hess} u)(x)) > 0$, hyperbolic if $\det((\operatorname{Hess} u)(x)) < 0$.

Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator $\frac{1}{2}\Delta_0$

- elliptic characteristic points are inaccessible, while
- hyperbolic characteristic points are accessible from the separatrices.

Definition

Characteristic point $x \in \Gamma(S)$ is called

```
elliptic if \det((\operatorname{Hess} u)(x)) > 0,
hyperbolic if \det((\operatorname{Hess} u)(x)) < 0.
```

Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator $\frac{1}{2}\Delta_0$

- elliptic characteristic points are inaccessible, while
- hyperbolic characteristic points are accessible from the separatrices.

Definition

Characteristic point $x \in \Gamma(S)$ is called

elliptic if
$$\det((\operatorname{Hess} u)(x)) > 0$$
, hyperbolic if $\det((\operatorname{Hess} u)(x)) < 0$.

Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator $\frac{1}{2}\Delta_0$

- elliptic characteristic points are inaccessible, while
- hyperbolic characteristic points are accessible from the separatrices.

Proof uses the eigenvalues of

$$\begin{pmatrix} X_1X_2u & -X_1X_1u \\ X_2X_2u & -X_2X_1u \end{pmatrix}(x) \quad \text{subject to} \quad \left(X_0u\right)(x) = 1 \; .$$

0	1 1	1	0 1	
				•••

$$b(\gamma(s)) \sim \frac{2}{s}$$

$$b(\gamma(s)) \sim \frac{2}{s}$$

 $b(\gamma(s)) \sim \frac{1}{\lambda_i s}$

$$b(\gamma(s)) \sim \frac{1}{\lambda_i s}$$