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Setting

I M three-dimensional smooth manifold,
I D contact structure on M , that is,
D = kerω for one-form ω on M with ω ∧ dω 6= 0,

I g smooth fibre inner product on D,
I (D, g) sub-Riemannian structure on M

S orientable surface embedded in M
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Adjusted setting (for notational convenience)

I M three-dimensional smooth manifold,

I X1 and X2 two smooth vector fields on M such that
X1, X2, [X1, X2] are linearly independent everywhere,

I D distribution spanned by X1 and X2,
I g given by requiring (X1, X2) to be an orthonormal frame,

I X0 the unique vector field on M such that

[X1, X2] = X0 + c112X1 + c212X2

I X0 the Reeb vector field for the contact form ω normalised
such that dω|D = − volg,

I S embedded surface in M given by

S = {x ∈M : u(x) = 0} for u ∈ C2(M) with du 6= 0 on S
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Definition

Set Γ(S) of characteristic points on S

x ∈ Γ(S) if and only if (X1u)(x) = (X2u)(x) = 0

Construct limiting operator ∆0 on surface S \ Γ(S)

I family of Riemannian manifolds (S, gε), for ε > 0, induced by
the Riemannian approximations obtained through requiring
(X1, X2,

√
εX0) to be a global orthonormal frame,

I family of Laplace–Beltrami operators ∆ε

Theorem (Barilari, Boscain, Cannarsa, H)

For f ∈ C2
c (S \ Γ(S)), we have

∆εf → ∆0f

uniformly on S \ Γ(S) as ε→ 0.
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Let Kε be the Gaussian curvature of the Riemannian manifold
(S, gε). We have

K0 := lim
ε→0

Kε = −X̂S(b)− b2

uniformly on compact subsets of S \ Γ(S).

Notion of intrinsic Gaussian curvature K0 for the surface S
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Example: Paraboloid z = a
(
x2 + y2

)
in the Heisenberg group

Characteristic foliation described by logarithmic spirals

In coordinates (s, ψ) with s > 0 and ψ ∈ [0, 2π) on S \ Γ(S)

X̂S =
∂

∂s
and b(s, ψ) =

2

s
,

so
1

2
∆0 =

1

2

∂2

∂s2
+

2

s

∂

∂s
.
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Example: Sphere x2 + y2 + z2 = a2 in the Heisenberg group

Characteristic foliation described by loxodromes

In coordinates (s, ϕ) on S \ Γ(S)

1

2
∆0 =

1

2

∂2

∂s2
+

(
cot (θ(s))

dθ

ds

)
∂

∂s
,

where ϕ ∈ [0, 2π) and s is given in terms of the polar angle θ as a
multiple of an elliptic integral of the second kind.
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We can recover three classes of familiar stochastic processes.

I Bessel process of order 3 has generator

1

2

∂2

∂r2
+

1

r

∂

∂r
for r > 0

I Legendre process of order 3 has generator

1

2

∂2

∂θ2
+ k cot(kθ)

∂

∂θ
for θ ∈

(
0,
π

k

)

I hyperbolic Bessel process of order 3 has generator

1

2

∂2

∂r2
+ k coth(kr)

∂

∂r
for r > 0
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Criterion for accessibility of characteristic points

in terms of

Hessu =

(
X1X1u X1X2u
X2X1u X2X2u

)

Definition

Characteristic point x ∈ Γ(S) is called

elliptic if det((Hessu)(x)) > 0 ,

hyperbolic if det((Hessu)(x)) < 0 .

Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator 1
2∆0

I elliptic characteristic points are inaccessible, while

I hyperbolic characteristic points are accessible from the
separatrices.
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Proof uses the eigenvalues of(
X1X2u −X1X1u
X2X2u −X2X1u

)
(x) subject to (X0u) (x) = 1 .
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