Stochastic processes on surfaces in 3D contact sub-Riemannian manifolds

Talk by Karen Habermann on joint work with Davide Barilari, Ugo Boscain and Daniele Cannarsa
arXiv:2004.13700
(to appear in Annales de I'Institut Henri Poincaré, Probabilités et Statistiques)
15th International Young Researchers Workshop on Geometry, Mechanics, and Control

Setting

Setting

- M three-dimensional smooth manifold,

Setting

- M three-dimensional smooth manifold,
- D contact structure on M,

Setting

- M three-dimensional smooth manifold,
- D contact structure on M, that is, $D=\operatorname{ker} \omega$ for one-form ω on M with $\omega \wedge \mathrm{d} \omega \neq 0$,

Setting

- M three-dimensional smooth manifold,
- D contact structure on M, that is, $D=\operatorname{ker} \omega$ for one-form ω on M with $\omega \wedge \mathrm{d} \omega \neq 0$,
- g smooth fibre inner product on D,

Setting

- M three-dimensional smooth manifold,
- D contact structure on M, that is, $D=\operatorname{ker} \omega$ for one-form ω on M with $\omega \wedge \mathrm{d} \omega \neq 0$,
- g smooth fibre inner product on D,
- (D, g) sub-Riemannian structure on M

Setting

- M three-dimensional smooth manifold,
- D contact structure on M, that is, $D=\operatorname{ker} \omega$ for one-form ω on M with $\omega \wedge \mathrm{d} \omega \neq 0$,
- g smooth fibre inner product on D,
- (D, g) sub-Riemannian structure on M

© Wikipedia

Setting

- M three-dimensional smooth manifold,
- D contact structure on M, that is, $D=\operatorname{ker} \omega$ for one-form ω on M with $\omega \wedge \mathrm{d} \omega \neq 0$,
- g smooth fibre inner product on D,
- (D, g) sub-Riemannian structure on M,
- S orientable surface embedded in M

(c) Wikipedia

Adjusted setting (for notational convenience)

- M three-dimensional smooth manifold,

Adjusted setting (for notational convenience)

- M three-dimensional smooth manifold,
- X_{1} and X_{2} two smooth vector fields on M such that $X_{1}, X_{2},\left[X_{1}, X_{2}\right]$ are linearly independent everywhere,

Adjusted setting (for notational convenience)

- M three-dimensional smooth manifold,
- X_{1} and X_{2} two smooth vector fields on M such that $X_{1}, X_{2},\left[X_{1}, X_{2}\right]$ are linearly independent everywhere,
- D distribution spanned by X_{1} and X_{2},

Adjusted setting (for notational convenience)

- M three-dimensional smooth manifold,
- X_{1} and X_{2} two smooth vector fields on M such that $X_{1}, X_{2},\left[X_{1}, X_{2}\right]$ are linearly independent everywhere,
- D distribution spanned by X_{1} and X_{2},
- g given by requiring $\left(X_{1}, X_{2}\right)$ to be an orthonormal frame,

Adjusted setting (for notational convenience)

- M three-dimensional smooth manifold,
- X_{1} and X_{2} two smooth vector fields on M such that $X_{1}, X_{2},\left[X_{1}, X_{2}\right]$ are linearly independent everywhere,
- D distribution spanned by X_{1} and X_{2},
- g given by requiring $\left(X_{1}, X_{2}\right)$ to be an orthonormal frame,
- X_{0} the unique vector field on M such that

$$
\left[X_{1}, X_{2}\right]=X_{0}+c_{12}^{1} X_{1}+c_{12}^{2} X_{2}
$$

Adjusted setting (for notational convenience)

- M three-dimensional smooth manifold,
- X_{1} and X_{2} two smooth vector fields on M such that $X_{1}, X_{2},\left[X_{1}, X_{2}\right]$ are linearly independent everywhere,
- D distribution spanned by X_{1} and X_{2},
- g given by requiring $\left(X_{1}, X_{2}\right)$ to be an orthonormal frame,
- X_{0} the unique vector field on M such that

$$
\left[X_{1}, X_{2}\right]=X_{0}+c_{12}^{1} X_{1}+c_{12}^{2} X_{2}
$$

- X_{0} the Reeb vector field for the contact form ω normalised such that $\left.\mathrm{d} \omega\right|_{D}=-\operatorname{vol}_{g}$,

Adjusted setting (for notational convenience)

- M three-dimensional smooth manifold,
- X_{1} and X_{2} two smooth vector fields on M such that $X_{1}, X_{2},\left[X_{1}, X_{2}\right]$ are linearly independent everywhere,
- D distribution spanned by X_{1} and X_{2},
- g given by requiring $\left(X_{1}, X_{2}\right)$ to be an orthonormal frame,
- X_{0} the unique vector field on M such that

$$
\left[X_{1}, X_{2}\right]=X_{0}+c_{12}^{1} X_{1}+c_{12}^{2} X_{2}
$$

- X_{0} the Reeb vector field for the contact form ω normalised such that $\left.\mathrm{d} \omega\right|_{D}=-\operatorname{vol}_{g}$,
- S embedded surface in M given by

$$
S=\{x \in M: u(x)=0\} \text { for } u \in C^{2}(M) \text { with } \mathrm{d} u \neq 0 \text { on } S
$$

Adjusted setting (for notational convenience)

- M three-dimensional smooth manifold,
- X_{1} and X_{2} two smooth vector fields on M such that $X_{1}, X_{2},\left[X_{1}, X_{2}\right]$ are linearly independent everywhere,
- D distribution spanned by X_{1} and X_{2},
- g given by requiring $\left(X_{1}, X_{2}\right)$ to be an orthonormal frame,
- X_{0} the unique vector field on M such that

$$
\left[X_{1}, X_{2}\right]=X_{0}+c_{12}^{1} X_{1}+c_{12}^{2} X_{2}
$$

- X_{0} the Reeb vector field for the contact form ω normalised such that $\left.\mathrm{d} \omega\right|_{D}=-\operatorname{vol}_{g}$,
- S embedded surface in M given by

$$
S=\{x \in M: u(x)=0\} \text { for } u \in C^{2}(M) \text { with } \mathrm{d} u \neq 0 \text { on } S
$$

Definition

Set $\Gamma(S)$ of characteristic points on S

$$
x \in \Gamma(S) \quad \text { if and only if } \quad\left(X_{1} u\right)(x)=\left(X_{2} u\right)(x)=0
$$

Definition

Set $\Gamma(S)$ of characteristic points on S

$$
x \in \Gamma(S) \quad \text { if and only if } \quad\left(X_{1} u\right)(x)=\left(X_{2} u\right)(x)=0
$$

Construct limiting operator Δ_{0} on surface $S \backslash \Gamma(S)$

Definition

Set $\Gamma(S)$ of characteristic points on S

$$
x \in \Gamma(S) \quad \text { if and only if } \quad\left(X_{1} u\right)(x)=\left(X_{2} u\right)(x)=0
$$

Construct limiting operator Δ_{0} on surface $S \backslash \Gamma(S)$

- family of Riemannian manifolds $\left(S, g_{\varepsilon}\right)$, for $\varepsilon>0$, induced by the Riemannian approximations obtained through requiring ($X_{1}, X_{2}, \sqrt{\varepsilon} X_{0}$) to be a global orthonormal frame,

Definition

Set $\Gamma(S)$ of characteristic points on S

$$
x \in \Gamma(S) \quad \text { if and only if } \quad\left(X_{1} u\right)(x)=\left(X_{2} u\right)(x)=0
$$

Construct limiting operator Δ_{0} on surface $S \backslash \Gamma(S)$

- family of Riemannian manifolds $\left(S, g_{\varepsilon}\right)$, for $\varepsilon>0$, induced by the Riemannian approximations obtained through requiring ($X_{1}, X_{2}, \sqrt{\varepsilon} X_{0}$) to be a global orthonormal frame,
- family of Laplace-Beltrami operators Δ_{ε}

Definition

Set $\Gamma(S)$ of characteristic points on S

$$
x \in \Gamma(S) \quad \text { if and only if } \quad\left(X_{1} u\right)(x)=\left(X_{2} u\right)(x)=0
$$

Construct limiting operator Δ_{0} on surface $S \backslash \Gamma(S)$

- family of Riemannian manifolds $\left(S, g_{\varepsilon}\right)$, for $\varepsilon>0$, induced by the Riemannian approximations obtained through requiring ($X_{1}, X_{2}, \sqrt{\varepsilon} X_{0}$) to be a global orthonormal frame,
- family of Laplace-Beltrami operators Δ_{ε}

Theorem (Barilari, Boscain, Cannarsa, H)

For $f \in C_{c}^{2}(S \backslash \Gamma(S))$, we have

$$
\Delta_{\varepsilon} f \rightarrow \Delta_{0} f
$$

uniformly on $S \backslash \Gamma(S)$ as $\varepsilon \rightarrow 0$.

Theorem (Barilari, Boscain, Cannarsa, H)
For $f \in C_{c}^{2}(S \backslash \Gamma(S))$, we have

$$
\Delta_{\varepsilon} f \rightarrow \Delta_{0} f
$$

uniformly on $S \backslash \Gamma(S)$ as $\varepsilon \rightarrow 0$.

Theorem (Barilari, Boscain, Cannarsa, H)
For $f \in C_{c}^{2}(S \backslash \Gamma(S))$, we have

$$
\Delta_{\varepsilon} f \rightarrow \Delta_{0} f
$$

uniformly on $S \backslash \Gamma(S)$ as $\varepsilon \rightarrow 0$.

The limiting operator is given by

$$
\Delta_{0}=\widehat{X}_{S}^{2}+b \widehat{X}_{S}
$$

Theorem (Barilari, Boscain, Cannarsa, H)
For $f \in C_{c}^{2}(S \backslash \Gamma(S))$, we have

$$
\Delta_{\varepsilon} f \rightarrow \Delta_{0} f
$$

uniformly on $S \backslash \Gamma(S)$ as $\varepsilon \rightarrow 0$.

The limiting operator is given by

$$
\Delta_{0}=\widehat{X}_{S}^{2}+b \widehat{X}_{S}
$$

where

$$
\widehat{X}_{S}=\frac{\left(X_{2} u\right) X_{1}-\left(X_{1} u\right) X_{2}}{\sqrt{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}}}
$$

Theorem (Barilari, Boscain, Cannarsa, H)
For $f \in C_{c}^{2}(S \backslash \Gamma(S))$, we have

$$
\Delta_{\varepsilon} f \rightarrow \Delta_{0} f
$$

uniformly on $S \backslash \Gamma(S)$ as $\varepsilon \rightarrow 0$.

The limiting operator is given by

$$
\Delta_{0}=\widehat{X}_{S}^{2}+b \widehat{X}_{S},
$$

where

$$
\widehat{X}_{S}=\frac{\left(X_{2} u\right) X_{1}-\left(X_{1} u\right) X_{2}}{\sqrt{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}} \quad \text { and } \quad b=\frac{X_{0} u}{\sqrt{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}}} ~ . ~}
$$

The limiting operator is given by

$$
\Delta_{0}=\widehat{X}_{S}^{2}+b \widehat{X}_{S},
$$

where

The limiting operator is given by

$$
\Delta_{0}=\widehat{X}_{S}^{2}+b \widehat{X}_{S},
$$

where

$$
\widehat{X}_{S}=\frac{\left(X_{2} u\right) X_{1}-\left(X_{1} u\right) X_{2}}{\sqrt{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}} \quad \text { and } \quad b=\frac{X_{0} u}{\sqrt{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}}} ~ . ~}
$$

Proposition (Barilari, Boscain, Cannarsa, H)

Let K_{ε} be the Gaussian curvature of the Riemannian manifold $\left(S, g_{\varepsilon}\right)$. We have

$$
K_{0}:=\lim _{\varepsilon \rightarrow 0} K_{\varepsilon}=-\widehat{X}_{S}(b)-b^{2}
$$

uniformly on compact subsets of $S \backslash \Gamma(S)$.

The limiting operator is given by

$$
\Delta_{0}=\widehat{X}_{S}^{2}+b \widehat{X}_{S}
$$

where

$$
\widehat{X}_{S}=\frac{\left(X_{2} u\right) X_{1}-\left(X_{1} u\right) X_{2}}{\sqrt{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}} \quad \text { and } \quad b=\frac{X_{0} u}{\sqrt{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}}} ~ . ~}
$$

Proposition (Barilari, Boscain, Cannarsa, H)

Let K_{ε} be the Gaussian curvature of the Riemannian manifold $\left(S, g_{\varepsilon}\right)$. We have

$$
K_{0}:=\lim _{\varepsilon \rightarrow 0} K_{\varepsilon}=-\widehat{X}_{S}(b)-b^{2}
$$

uniformly on compact subsets of $S \backslash \Gamma(S)$.
Notion of intrinsic Gaussian curvature K_{0} for the surface S

Example: Paraboloid $z=a\left(x^{2}+y^{2}\right)$ in the Heisenberg group

Example: Paraboloid $z=a\left(x^{2}+y^{2}\right)$ in the Heisenberg group

Characteristic foliation described by logarithmic spirals

Example: Paraboloid $z=a\left(x^{2}+y^{2}\right)$ in the Heisenberg group

Characteristic foliation described by logarithmic spirals

In coordinates (s, ψ) with $s>0$ and $\psi \in[0,2 \pi)$ on $S \backslash \Gamma(S)$

$$
\widehat{X}_{S}=\frac{\partial}{\partial s} \quad \text { and } \quad b(s, \psi)=\frac{2}{s}
$$

Example: Paraboloid $z=a\left(x^{2}+y^{2}\right)$ in the Heisenberg group

Characteristic foliation described by logarithmic spirals

In coordinates (s, ψ) with $s>0$ and $\psi \in[0,2 \pi)$ on $S \backslash \Gamma(S)$

$$
\widehat{X}_{S}=\frac{\partial}{\partial s} \quad \text { and } \quad b(s, \psi)=\frac{2}{s}
$$

SO

$$
\Delta_{0}=\frac{\partial^{2}}{\partial s^{2}}+\frac{2}{s} \frac{\partial}{\partial s} .
$$

Example: Paraboloid $z=a\left(x^{2}+y^{2}\right)$ in the Heisenberg group

Characteristic foliation described by logarithmic spirals

In coordinates (s, ψ) with $s>0$ and $\psi \in[0,2 \pi)$ on $S \backslash \Gamma(S)$

$$
\widehat{X}_{S}=\frac{\partial}{\partial s} \quad \text { and } \quad b(s, \psi)=\frac{2}{s}
$$

so

$$
\frac{1}{2} \Delta_{0}=\frac{1}{2} \frac{\partial^{2}}{\partial s^{2}}+\frac{1}{s} \frac{\partial}{\partial s} .
$$

Example: Sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the Heisenberg group

Example: Sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the Heisenberg group

Characteristic foliation described by loxodromes

Example: Sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the Heisenberg group

Characteristic foliation described by loxodromes

In coordinates (s, φ) on $S \backslash \Gamma(S)$

$$
\frac{1}{2} \Delta_{0}=\frac{1}{2} \frac{\partial^{2}}{\partial s^{2}}+\left(\cot (\theta(s)) \frac{\mathrm{d} \theta}{\mathrm{~d} s}\right) \frac{\partial}{\partial s}
$$

where $\varphi \in[0,2 \pi)$ and s is given in terms of the polar angle θ as a multiple of an elliptic integral of the second kind.

We can recover three classes of familiar stochastic processes.

We can recover three classes of familiar stochastic processes.

- Bessel process of order 3 has generator

$$
\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r} \quad \text { for } r>0
$$

We can recover three classes of familiar stochastic processes.

- Bessel process of order 3 has generator

$$
\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r} \quad \text { for } r>0
$$

- Legendre process of order 3 has generator

$$
\frac{1}{2} \frac{\partial^{2}}{\partial \theta^{2}}+k \cot (k \theta) \frac{\partial}{\partial \theta} \quad \text { for } \theta \in\left(0, \frac{\pi}{k}\right)
$$

We can recover three classes of familiar stochastic processes.

- Bessel process of order 3 has generator

$$
\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r} \quad \text { for } r>0
$$

- Legendre process of order 3 has generator

$$
\frac{1}{2} \frac{\partial^{2}}{\partial \theta^{2}}+k \cot (k \theta) \frac{\partial}{\partial \theta} \quad \text { for } \theta \in\left(0, \frac{\pi}{k}\right)
$$

- hyperbolic Bessel process of order 3 has generator

$$
\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+k \operatorname{coth}(k r) \frac{\partial}{\partial r} \quad \text { for } r>0
$$

Criterion for accessibility of characteristic points

Criterion for accessibility of characteristic points in terms of

$$
\operatorname{Hess} u=\left(\begin{array}{ll}
X_{1} X_{1} u & X_{1} X_{2} u \\
X_{2} X_{1} u & X_{2} X_{2} u
\end{array}\right)
$$

Criterion for accessibility of characteristic points in terms of

$$
\operatorname{Hess} u=\left(\begin{array}{ll}
X_{1} X_{1} u & X_{1} X_{2} u \\
X_{2} X_{1} u & X_{2} X_{2} u
\end{array}\right)
$$

Definition

Characteristic point $x \in \Gamma(S)$ is called

$$
\begin{array}{ll}
\text { elliptic } & \text { if } \operatorname{det}((\operatorname{Hess} u)(x))>0, \\
\text { hyperbolic } & \text { if } \operatorname{det}((\operatorname{Hess} u)(x))<0
\end{array}
$$

Criterion for accessibility of characteristic points in terms of

$$
\operatorname{Hess} u=\left(\begin{array}{ll}
X_{1} X_{1} u & X_{1} X_{2} u \\
X_{2} X_{1} u & X_{2} X_{2} u
\end{array}\right)
$$

Definition

Characteristic point $x \in \Gamma(S)$ is called

elliptic	if $\operatorname{det}((\operatorname{Hess} u)(x))>0$,
hyperbolic	if $\operatorname{det}((\operatorname{Hess} u)(x))<0$.

Theorem (Barilari, Boscain, Cannarsa, H)
For the canonical stochastic process with generator $\frac{1}{2} \Delta_{0}$

- elliptic characteristic points are inaccessible, while
- hyperbolic characteristic points are accessible from the separatrices.

Definition

Characteristic point $x \in \Gamma(S)$ is called

$$
\begin{array}{ll}
\text { elliptic } & \text { if } \operatorname{det}((\operatorname{Hess} u)(x))>0, \\
\text { hyperbolic } & \text { if } \operatorname{det}((\operatorname{Hess} u)(x))<0 .
\end{array}
$$

Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator $\frac{1}{2} \Delta_{0}$

- elliptic characteristic points are inaccessible, while
- hyperbolic characteristic points are accessible from the separatrices.

Definition

Characteristic point $x \in \Gamma(S)$ is called

$$
\begin{array}{ll}
\text { elliptic } & \text { if } \operatorname{det}((\operatorname{Hess} u)(x))>0, \\
\text { hyperbolic } & \text { if } \operatorname{det}((\operatorname{Hess} u)(x))<0 .
\end{array}
$$

Theorem (Barilari, Boscain, Cannarsa, H)

For the canonical stochastic process with generator $\frac{1}{2} \Delta_{0}$

- elliptic characteristic points are inaccessible, while
- hyperbolic characteristic points are accessible from the separatrices.

Proof uses the eigenvalues of

$$
\left(\begin{array}{ll}
X_{1} X_{2} u & -X_{1} X_{1} u \\
X_{2} X_{2} u & -X_{2} X_{1} u
\end{array}\right)(x) \quad \text { subject to } \quad\left(X_{0} u\right)(x)=1
$$

$b(\gamma(s)) \sim \frac{2}{s}$

$b(\gamma(s)) \sim \frac{2}{s}$
$b(\gamma(s)) \sim \frac{1}{\lambda_{i} s}$
$b(\gamma(s)) \sim \frac{1}{\lambda_{i} s}$

