# Abelianisation of Meromorphic $\mathsf{GL}(2,\mathbb{C})\text{-}\mathsf{Connections}$

based on arXiv: 1902.03384 and work in progress

## Nikita Nikolaev



19 March 2021

Consider:

- X := a Riemann surface (compact)
- \$\mathcal{E}\$ := a holomorphic vector bundle on X
   = sheaf of holomorphic sections of a holomorphic vector bundle on X
- $D \subset X$  := effective divisor := discrete points with positive multiplicity
- A *meromorphic connection* on  $\mathcal{E}$  is a  $\mathbb{C}$ -linear map

$$\nabla: \mathcal{E} \longrightarrow \mathcal{E} \otimes \omega_{\mathsf{X}}(\mathsf{D})$$

satisfying the Leibniz rule: for any local section  $e \in \mathcal{E}$  and holomorphic function f,

$$\nabla(fe) = f\nabla(e) + e \otimes \mathrm{d}f.$$

- Locally,  $\nabla = d + \phi$  where  $\phi =$  endomorphism of  $\mathcal{E}$  with values in  $\omega_X(D)$
- If  $p \in D$  has multiplicity  $m \ge 1$  and z(p) = 0, then  $\nabla = d + A(z)z^{-m} dz$ where A(z) = holomorphic matrix
- Locally, the same as a singular ODE  $\nabla_{\partial_z} e(z) = \partial_z e(z) + A(z)z^{-m}e(z) = 0.$

- Observation: if we plug in not the vector field ∂<sub>z</sub> but z<sup>m</sup>∂<sub>z</sub>, then the covariant derivative ∇<sub>z<sup>m</sup>∂<sub>z</sub></sub> is a C-linear map E → E.
- Vector fields of the form  $z^m \partial_z$  form a rank-one Lie algebroid

$$\mathcal{A}_X \mathrel{\mathop:}= \mathcal{T}_X(-D) \hookrightarrow \mathcal{T}_X$$

of holomorphic vector fields vanishing along D.

- Fact: Any Lie algebroid of rank one on a curve X is either a bundle of abelian Lie algebras or it is of the form  $\mathcal{T}_X(-D)$  for some divisor  $D \subset X$ .
- dim X = 1  $\implies$  no curvature  $\Leftrightarrow \nabla_{[u,v]} = \nabla_u \nabla_v \nabla_v \nabla_u$
- $\Rightarrow (\mathcal{E}, \nabla) \in \operatorname{Rep}(\mathcal{A}_X)$  is a *representation* of the Lie algebroid  $\mathcal{A}_X$ .
- $\mathcal{A}_X = \mathcal{T}_X(-D)$  has a ssc integration  $\Pi_1(X, D) = \textit{twisted fundamental groupoid}$
- Lie algebroid representation  $(\mathcal{E}, \nabla)$  integrates to Lie groupoid representation  $(\mathcal{E}, \Psi)$ where  $\Psi : \Pi_1(X, D) \longrightarrow GL(\mathcal{E})$  is universal parallel transport operator for  $\nabla$ .

# **Pushforward of Connections Along Branched Covers**

- Let  $\pi : \mathsf{Y} \to \mathsf{X}$  be branched n : 1 cover
- Let  $B \subset X$ ,  $R \subset Y$  are branch and ramification loci (assume simple)
- $C := \pi^* D \subset Y$  or  $C := \pi^* D \cup R \subset Y$  divisor,  $\mathcal{A}_Y := \mathcal{T}_Y(-C)$
- Pushforward  $\pi_* : \operatorname{Rep}(\mathcal{A}_{\mathsf{Y}}) \longrightarrow \operatorname{Rep}(\mathcal{A}'_{\mathsf{X}})$  where  $\mathcal{A}'_{\mathsf{X}} := \mathcal{A}_{\mathsf{X}}(-\mathsf{B}) = \mathcal{T}_{\mathsf{X}}(-(\mathsf{D} \cup \mathsf{B})).$
- In particular, rank-1 representations push down to rank-*n* representations:

$$\pi_*: \operatorname{Rep}^1(\mathcal{A}_{\mathsf{Y}}) \longrightarrow \operatorname{Rep}^n(\mathcal{A}'_{\mathsf{X}})$$

- Question: can every rank-*n* representation be seen as the pushforward of some rank-1 representation?
   Answer: absolutely not! π<sub>\*</sub>∂ has very special quasi-permutation monodromy around B corresponding to π.
- Our Goal: given correct assumptions on Y, build an equivalence

$$\operatorname{Rep}^1_*(\mathcal{A}_{\mathsf{Y}}) \simeq \operatorname{Rep}^n_{\Gamma}(\mathcal{A}_{\mathsf{X}})$$

- ${\rm Rep}^1_*({\mathcal A}_Y) \subset {\rm Rep}^1({\mathcal A}_Y)$  obtained by fixing residues along R
- $\operatorname{Rep}_{\Gamma}^{n}(\mathcal{A}_{\mathsf{X}}) \subset \operatorname{Rep}^{n}(\mathcal{A}_{\mathsf{X}})$  obtained by genericity wrt chosen combinatorial data  $\Gamma$  on  $\mathsf{X}$

# Theorem (N)

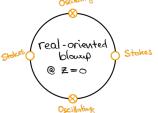
For n = 2, there is indeed such an equivalence, called **abelianisation**.

#### **Isotropy Representations and Stokes Sectors**

• If  $p \in D$  with multiplicity *m*, get *isotropy Lie algebra*:

$$\mathfrak{iso}_p(\mathcal{A}_{\mathsf{X}}) \mathrel{\mathop:}= \mathsf{ker} \left( \left. \mathcal{A}_{\mathsf{X}} \right|_{\mathsf{p}} \longrightarrow \left. \mathcal{T}_{\mathsf{X}} \right|_{\mathsf{p}} \right) \cong (\mathsf{T}_{\mathsf{p}}^*\mathsf{X})^{m-1}$$

- Given a representation (E, ∇) ∈ Rep(A<sub>X</sub>) and p ∈ D, get *isotropy representation* iso<sub>p</sub>(∇) : iso<sub>p</sub>(A<sub>X</sub>) → End(E|<sub>p</sub>)
- If m = 1, iso<sub>p</sub>(∇) is just the residue matrix A(0) of ∇ at p.
   If m ≥ 2, iso<sub>p</sub>(∇) is the leading term of the principal part A(0) of ∇ at p.
- eigenvalues of  $\mathfrak{iso}_p(\nabla) \in \operatorname{End}(\mathcal{E}|_p) \otimes (\mathsf{T}_p\mathsf{X})^{m-1}$  are elements  $\lambda_1, \ldots, \lambda_n \in (\mathsf{T}_p\mathsf{X})^{m-1}$  $\Rightarrow$  weights  $\lambda_{ij} := \lambda_i - \lambda_j$  for the adjoint action on  $\operatorname{End}(\mathcal{E}|_p)$
- For  $m \ge 2$ ,  $v \in \mathsf{T}_{\mathsf{p}}\mathsf{X}$  is an (ij)-Stokes vector if  $v^{m-1} = \lambda_{ij}$ .
- Let  $D_{irreg} \subset D$  points with multiplicity  $\ge 2$  (irregular locus). Let  $\widetilde{X} :=$  real-oriented blowup of X along  $D_{irreg}$ . Let  $\widetilde{D}_{irreg} :=$  preimage of  $D_{irreg}$  = disjoint union of circles  $\mathbb{S}^1$ .



- Assume:  $\nabla$  has *generic polar data* :=  $\mathfrak{iso}_p(\nabla)$  has distinct real parts (if m = 1) or distinct eigenvalues (if  $m \ge 2$ ). Then the number of Stokes and oscillating directions is maximal: for n = 2, there are 2(m 1) directions of each kind.
- In each Stokes sector (for m ≥ 2) or in any sector near a simple pole (for m = 1), get locally-defined flat *Levelt filtrations*:

$$\mathcal{E}^{ullet} = \left(\mathcal{E}^1 \subset \mathcal{E}^2 \subset \cdots \subset \mathcal{E}
ight)$$

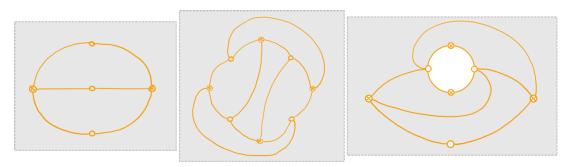
by growth rates of sections as they are parallel transported into the Stokes direction.

- Get locally filtered representations: near each simple pole or Stokes direction,
  - $\begin{aligned} (\mathcal{E}, \nabla) &\cong (\mathcal{E}^{\bullet}, \nabla) & \text{where} & \nabla : \mathcal{E}^k \to \mathcal{E}^k \otimes \omega_{\mathsf{X}}(\mathsf{D}) \\ (\mathcal{E}, \Psi) &\cong (\mathcal{E}^{\bullet}, \Psi) & \text{where} & \Psi : \mathsf{G} \longrightarrow \mathsf{GL}(\mathcal{E}^{\bullet}) . \end{aligned}$
- If  $\nabla$  has generic polar data, each  $\mathcal{E}^{\bullet}$  is a full filtration.

## **Stokes Graphs**

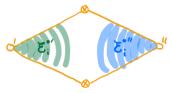
Consider:

- $\pi : Y \to X$  ramified double cover;  $B \subset X$  branch locus,  $R \subset Y$  ramification locus
- Assume:  $B \cap D = \emptyset$  and genus  $g_Y = |D| + 4g_X 3$ .
- Introduce two colours  $\otimes, \bigcirc$  for points in B and D as follows:
  - $\otimes$  for each point in B
  - $\bigcirc$  for each point in  $\mathsf{D}_{\mathsf{reg}}$
  - $\bigcirc$  for each Stokes direction in  $\widetilde{\mathsf{D}}_{irreg}$
  - $\otimes$  for each oscillating direction in  $\widetilde{D}_{irreg}$
- Definition: A (simple, saddle-free) *Stokes graph* Γ on (X, D) adapted to π is a bipartite squaregraph on X with vertex colours ({⊗}, {○}) which is
  - 1 trivalent at each  $\otimes \in \underset{\sim}{\mathsf{B}}$ ;
  - 2 bivalent at each  $\otimes \in \widetilde{D}_{irreg}$  with the two edges being the circle boundary arcs.



#### Genericity with respect to $\Gamma$

On each face U<sub>i</sub> of Γ, (E, ∇) is filtered in two ways: E<sup>•</sup><sub>i</sub>', E<sup>•</sup><sub>i</sub>'' coming from poles O', O''. We say the Levelt filtrations of (E, ∇) are *generic wrt* Γ if E<sup>•</sup><sub>i</sub>' h E<sup>•</sup><sub>i</sub>'' for face U<sub>i</sub>.



Key property 1: if the Levelt filtrations of (*E*, ∇) are generic wrt Γ, then we get canonical flat decompositions over each face U<sub>i</sub>:

$$\varphi_i: \mathcal{E}_i \xrightarrow{\sim} \mathcal{L}'_i \oplus \mathcal{L}''_i$$

U.

19.03.202

• Key property 2: Given two adjacent faces U<sub>i</sub>, U<sub>j</sub>, over the (*ij*) edge, get a filtered flat decomposition-comparison isomorphism:

$$\varphi_{ij} := \varphi_j \circ \varphi_i^{-1} = \begin{bmatrix} 1 & \Delta_{ij} \\ 0 & g_{ij} \end{bmatrix} : \begin{array}{c} \mathcal{L}'_{ij} \xrightarrow{1} \mathcal{L}'_{ij} \\ \oplus & \swarrow \\ \mathcal{L}''_{ij} \xrightarrow{g_{ij}} \mathcal{L}'''_{ij} \end{array}$$

### Abelianisation

- Let  $\operatorname{Rep}_{\Gamma}^2(\mathcal{A}_X) :=$  category of rank-two representations of  $\mathcal{A}_X = \mathcal{T}_X(-D)$  whose Levelt filtrations are generic wrt  $\Gamma$ .
- Let  $\operatorname{Rep}^1_*(\mathcal{A}_Y) :=$  category of rank-one representations of  $\mathcal{A}_Y = \mathcal{T}_Y(-\pi^*D R)$  which have residues -1/2 at ramification points.

## Theorem (N)

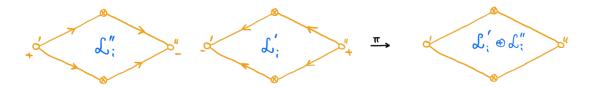
There is an equivalence of categories

$$\begin{aligned} \pi_{\Gamma}^{ab} : \operatorname{Rep}_{\Gamma}^{2}(\mathcal{A}_{\mathsf{X}}) & \xrightarrow{\sim} \operatorname{Rep}_{*}^{1}(\mathcal{A}_{\mathsf{Y}}) \\ (\mathcal{E}, \nabla) & \longmapsto (\mathcal{L}, \partial) \end{aligned}$$

- The inverse equivalence  $\pi_{ab}^{\Gamma}$  is a local deformation of  $\pi_*$ .
- $\pi_{\Gamma}^{ab}$  depends on the choice of a lift of  $\Gamma$  to a well-oriented double cover graph  $\vec{\Gamma}$  on Y:



 Only two possible such choices of Γ related by the canonical involution σ : Y → Y, and the two choices of π<sup>ab</sup><sub>Γ</sub> are intertwined by σ\*. Constructing  $\pi_{\Gamma}^{ab} : (\mathcal{E}, \nabla) \mapsto (\mathcal{L}, \partial)$  — Main Idea



- Each face  $U_i$  with polar vertices  $\bigcirc', \bigcirc''$  lifts to two faces  $U'_i, U''_i$  of  $\vec{\Gamma}$
- Lift  $\mathcal{L}'_i$  to  $U'_i$  and  $\mathcal{L}''_i$  to  $U''_i$ .
- Glue  $\mathcal{L}''_i$  to  $\mathcal{L}'''_j$  by  $g_{ij}$  = diagonal entry of the decomposition-comparison isomorphism:

$$\varphi_{ij} := \varphi_j \circ \varphi_i^{-1} = \begin{bmatrix} 1 & \Delta_{ij} \\ 0 & g_{ij} \end{bmatrix} : \begin{array}{c} \mathcal{L}'_{ij} \xrightarrow{1} \mathcal{L}'_{ij} \\ \oplus & \swarrow \\ \mathcal{L}''_{ij} \xrightarrow{g_{ij}} \mathcal{L}'''_{ij} \end{array}$$

• The remaining off-diagonal information  $\Delta_{ij}$  is used to invert  $\pi_{\Gamma}^{ab}$ .

# Constructing $\pi_{ab}^{\Gamma} : (\mathcal{L}, \partial) \mapsto (\mathcal{E}, \nabla)$ — Local Groupoid Cocycle

- Strategy: given  $(\mathcal{E}, \nabla)$ , construct  $(\mathcal{L}, \partial)$ , then compare  $(\mathcal{E}, \nabla)$  with  $(\pi_*\mathcal{L}, \pi_*\partial)$ .
- On each face  $U_i$ , by construction of  $\mathcal{L}$ , get canonical isomorphisms

$$\varphi_i: \mathcal{E}_i \longrightarrow \mathcal{L}'_i \oplus \mathcal{L}''_i = \pi_* \mathcal{L}_i$$

Over each edge (*ij*), interpret decomposition-comparison isomorphisms
 φ<sub>ij</sub> = φ<sub>j</sub> ∘ φ<sub>i</sub><sup>-1</sup> as automorphisms of π<sub>\*</sub>L:

$$arphi_{ij} = \begin{bmatrix} 1 & \Delta_{ij} \\ 0 & 1 \end{bmatrix} \in \mathsf{Aut} \left( \pi_* \mathcal{L}_{ij} 
ight)$$

Each φ<sub>ij</sub> is a Čech-groupoid 1-cocycle with values in the representation Aut(π<sub>\*</sub>L): Let G<sub>X</sub> := Π<sub>1</sub>(X, B ∪ D) and G<sub>Y</sub> := Π<sub>1</sub>(Y, R ∪ π<sup>\*</sup>D) be the relevant groupoids. Let (E, Ψ), (L, ψ), (π<sub>\*</sub>L, π<sub>\*</sub>ψ) be the corresponding representations of G<sub>X</sub> and G<sub>Y</sub>. Over each U<sub>i</sub>, use φ<sub>i</sub> to transport Ψ to representation Φ on π<sub>\*</sub>L: Φ<sub>i</sub> = φ<sub>i</sub>Ψ<sub>i</sub>φ<sub>i</sub><sup>-1</sup>. Then:

$$\varphi_{ij} = \Phi_i \circ (\pi_* \psi_{ij})^{-1} \in \mathsf{Z}^1 \big( \mathsf{G}_{ij}, \mathsf{Aut}(\pi_* \mathcal{L}_{ij}) \big)$$

where  $G_{ij} :=$  identity-connected component of  $G|_{U_{ij}}$ .

- $\varphi_{ij}$  restricts to id on  $\bigcirc \qquad \leftrightarrow \qquad \pi_* \mathcal{L}_p \xrightarrow{\sim} gr(\mathcal{E}_p^{\bullet})$  for each  $p \in D$
- $\varphi_{ij}$  restricts to  $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$  on  $\otimes \in \mathsf{B} \quad \leftrightarrow \quad [\pi] \simeq \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1-1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0-1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1-1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0-1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1-1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0-1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1-1 \\ 0 & 1 \end{bmatrix}$

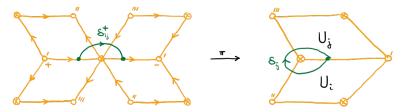
Constructing  $\pi_{ab}^{\Gamma} : (\mathcal{L}, \partial) \mapsto (\mathcal{E}, \nabla)$  — Main Idea

• For each edge (ij), look again at the formula

$$arphi_{ij} = egin{bmatrix} 1 & \Delta_{ij} \ 0 & 1 \end{bmatrix} \in \mathsf{Aut}\left(\pi_*\mathcal{L}_{ij}
ight)$$
 .

• **Crucial observation** [essentially by Gaiotto-Moore-Neitzke]: Can interpret  $\Delta_{ij}$  as the parallel transport of  $\partial$  along a  $\delta_{ij}^+$ :

$$\Delta_{ij} = \operatorname{Par}(\partial, \delta_{ij}^+)$$



This *path-lifting rule* does not depend on (*L*, *∂*), so we get a Čech-groupoid 1-cocycle with values in the sheaf *Aut*(π<sub>\*</sub>) of natural automorphisms of π<sub>\*</sub>:

$$\widehat{\varphi} := \mathrm{id} + \widehat{\Delta} \in \check{\mathsf{Z}}^1\big(\mathsf{G}_{\mathsf{X}}, \mathcal{A}ut(\pi_*)\big) \qquad \text{where} \qquad \widehat{\Delta} = \Big\{\widehat{\Delta}_{ij} = \mathrm{Par}(-, \delta_{ij}^+)\Big\}$$

• Finally,  $\pi^{\Gamma}_{\mathrm{ab}} := \widehat{\varphi} \cdot \pi_*$ 

"I Thank you for your attention! "