Deformations of Lagrangian submanifolds in log-symplectic manifolds

Stephane Geudens joint work with Marco Zambon

KU Leuven

arXiv:2009.01146

Lagrangian submanifolds in symplectic geometry

Weinstein's Lagrangian neighborhood theorem Around a Lagrangian L,

 $(M, \omega) \cong (T^*L, \omega_{can}).$

Lagrangian submanifolds in symplectic geometry

Weinstein's Lagrangian neighborhood theorem Around a Lagrangian *L*,

 $(M,\omega)\cong (T^*L,\omega_{can}).$

In the local model (T^*L, ω_{can}) :

• $Gr(\alpha) \subset (T^*L, \omega_{can})$ is Lagrangian iff. $d\alpha = 0$.

Gr(α), Gr(β) ⊂ (T*L, ω_{can}) related by Hamiltonian diffeomorphism iff. [α] = [β] in H¹(L).

 $\mathcal{M}^{Ham}(L) = H^1(L).$

Lagrangian submanifolds in symplectic geometry

Weinstein's Lagrangian neighborhood theorem Around a Lagrangian *L*,

 $(M,\omega)\cong (T^*L,\omega_{can}).$

In the local model (T^*L, ω_{can}) :

• $Gr(\alpha) \subset (T^*L, \omega_{can})$ is Lagrangian iff. $d\alpha = 0$.

Gr(α), Gr(β) ⊂ (T*L, ω_{can}) related by Hamiltonian diffeomorphism iff. [α] = [β] in H¹(L).

 $\mathcal{M}^{Ham}(L) = H^1(L).$

What about the log-symplectic case?

Lagrangian submanifolds in Poisson geometry

Definition¹ $L \subset (M, \pi)$ is Lagrangian if for all $p \in L$:

 $T_pL \cap T_pS$ is a Lagrangian subspace of $(T_pS, (\omega_S)_p)$.

Here (S, ω_S) is the symplectic leaf through $p \in L$.

¹I. Vaisman, *Lectures on the Geometry of Poisson Manifolds*, Progress in Mathematics, Birkhäuser, 1994

Lagrangian submanifolds in Poisson geometry

Definition¹ $L \subset (M, \pi)$ is Lagrangian if for all $p \in L$:

 $T_pL \cap T_pS$ is a Lagrangian subspace of $(T_pS, (\omega_S)_p)$.

Here (S, ω_S) is the symplectic leaf through $p \in L$.

Examples

- ▶ Planes through the origin in $(\mathfrak{so}_3^*, \pi_{lin})$.
- Graphs of Poisson immersions $\phi : (M_1, \pi_1) \rightarrow (M_2, \pi_2)$.

¹I. Vaisman, *Lectures on the Geometry of Poisson Manifolds*, Progress in Mathematics, Birkhäuser, 1994

Log-symplectic manifolds

Definition

 (M^{2n},π) is log-symplectic if $\wedge^n \pi: M \to \wedge^{2n} TM$ is transverse to the zero section.

- π is symplectic away from singular locus $Z:=(\wedge^n\pi)^{-1}(0).$
 - Z is a hypersurface with induced corank-one Poisson structure.
 - $(Z, \pi|_Z)$ has a Poisson vector field transverse to the symplectic leaves: $V_{mod}|_Z$.

Log-symplectic manifolds

Definition

 (M^{2n},π) is log-symplectic if $\wedge^n \pi: M \to \wedge^{2n} TM$ is transverse to the zero section.

- π is symplectic away from singular locus $Z := (\wedge^n \pi)^{-1}(0)$.
 - Z is a hypersurface with induced corank-one Poisson structure.
 - ► (Z, π|_Z) has a Poisson vector field transverse to the symplectic leaves: V_{mod}|_Z.

Example

On $(\mathbb{R}^{2n}, x_1, y_1, ..., x_n, y_n)$:

$$\pi = \partial_{x_1} \wedge y_1 \partial_{y_1} + \sum_{i=2}^n \partial_{x_i} \wedge \partial_{y_i}.$$

Modular vector field is ∂_{x_1} . This is the local model around $p \in Z$.

²C. Kirchhoff-Lukat, *Aspects of Generalized Geometry: Branes with Boundary, Blow-ups, Brackets and Bundles*, PhD thesis, University of Cambridge, 2018.

• If $L \pitchfork Z$: use *b*-symplectic geometry². Around *L*:

$$(M,\omega)\cong ({}^{b}T^{*}L,\omega_{can}).$$

Hence $\mathcal{M}^{Ham}(L) = {}^{b}H^{1}(L) \cong H^{1}(L) \oplus H^{0}(L \cap Z).$

²C. Kirchhoff-Lukat, *Aspects of Generalized Geometry: Branes with Boundary, Blow-ups, Brackets and Bundles*, PhD thesis, University of Cambridge, 2018.

• If $L \pitchfork Z$: use *b*-symplectic geometry². Around *L*:

$$(M,\omega)\cong ({}^{b}T^{*}L,\omega_{can}).$$

Hence $\mathcal{M}^{Ham}(L) = {}^{b}H^{1}(L) \cong H^{1}(L) \oplus H^{0}(L \cap Z).$

If L ⊂ Z then
either dim L = n − 1 and components of L lie inside leaves,
or dim L = n and L is transverse to the leaves of Z.

²C. Kirchhoff-Lukat, *Aspects of Generalized Geometry: Branes with Boundary, Blow-ups, Brackets and Bundles*, PhD thesis, University of Cambridge, 2018.

▶ If $L \pitchfork Z$: use *b*-symplectic geometry². Around *L*:

$$(M,\omega)\cong ({}^{b}T^{*}L,\omega_{can}).$$

Hence $\mathcal{M}^{Ham}(L) = {}^{b}H^{1}(L) \cong H^{1}(L) \oplus H^{0}(L \cap Z).$

If L ⊂ Z then
either dim L = n − 1 and components of L lie inside leaves,
or dim L = n and L is transverse to the leaves of Z.

We focus on $L^n \subset Z \subset M^{2n}$. L^n compact, connected.

²C. Kirchhoff-Lukat, *Aspects of Generalized Geometry: Branes with Boundary, Blow-ups, Brackets and Bundles*, PhD thesis, University of Cambridge, 2018.

Construct normal form in two steps: $L \subset (Z, \pi|_Z)$ and $Z \subset (M, \pi)$.

Construct normal form in two steps: $L \subset (Z, \pi|_Z)$ and $Z \subset (M, \pi)$. Step 1: General fact $L \subset (N, \pi)$ Lagrangian transverse to leaves. Then

Construct normal form in two steps: $L \subset (Z, \pi|_Z)$ and $Z \subset (M, \pi)$.

Step 1: General fact

 $L \subset (N, \pi)$ Lagrangian transverse to leaves. Then

• there is a neighborhood U of L s.t. $\pi|_U$ is regular. $\rightarrow L$ gets foliation \mathcal{F}_I .

Construct normal form in two steps: $L \subset (Z, \pi|_Z)$ and $Z \subset (M, \pi)$.

Step 1: General fact

 $L \subset (N, \pi)$ Lagrangian transverse to leaves. Then

- there is a neighborhood U of L s.t. $\pi|_U$ is regular. $\rightarrow L$ gets foliation \mathcal{F}_L .
- there is a canonical Poisson structure π_{can} on $T^*\mathcal{F}_L$ s.t.

$$T^*\mathcal{F}_L = \prod_{B\in\mathcal{F}_L} (T^*B, \omega_{T^*B}).$$

Construct normal form in two steps: $L \subset (Z, \pi|_Z)$ and $Z \subset (M, \pi)$.

Step 1: General fact

 $L \subset (N, \pi)$ Lagrangian transverse to leaves. Then

- there is a neighborhood U of L s.t. $\pi|_U$ is regular. $\rightarrow L$ gets foliation \mathcal{F}_L .
- there is a canonical Poisson structure π_{can} on $T^*\mathcal{F}_L$ s.t.

$$T^*\mathcal{F}_L = \coprod_{B\in\mathcal{F}_L} (T^*B, \omega_{T^*B}).$$

 \blacktriangleright around *L*,

$$(N,\pi)\cong (T^*\mathcal{F}_L,\pi_{can}).$$

Step 2: $Z \subset (M, \pi)^3$

Let (M, Z, π) be an orientable log-symplectic manifold. The local model for (M, π) around Z is $Z \times \mathbb{R}$ with

 $V_{mod}|_Z \wedge t\partial_t + \pi|_Z.$

³V. Guillemin, E. Miranda, A.R. Pires, *Symplectic and Poisson geometry on b-manifolds*, Adv. Math. **264**, p. 864-896 (2014).

Step 2: $Z \subset (M, \pi)^3$

Let (M, Z, π) be an orientable log-symplectic manifold. The local model for (M, π) around Z is $Z \times \mathbb{R}$ with

$$V_{mod}|_Z \wedge t\partial_t + \pi|_Z.$$

Corollary (Normal form ad interim)

The local model around $L^n \subset Z \subset (M^{2n}, \pi)$ is $T^*\mathcal{F}_L imes \mathbb{R}$ with

$$V \wedge t\partial_t + \pi_{can}$$
.

Here V is image of $V_{mod}|_Z$ under $(Z, \pi|_Z) \xrightarrow{\sim} (T^* \mathcal{F}_L, \pi_{can})$.

We can choose any representative of $[V] \in H^1_{\pi_{can}}(T^*\mathcal{F}_L)...$

³V. Guillemin, E. Miranda, A.R. Pires, *Symplectic and Poisson geometry on b-manifolds*, Adv. Math. **264**, p. 864-896 (2014).

Intermezzo: Poisson vector fields on $(T^*\mathcal{F}_L, \pi_{can})$

 (L, \mathcal{F}_L) foliated manifold. Denote

$$\mathfrak{X}(L)^{\mathcal{F}_L} := \{ W \in \mathfrak{X}(L) : [W, \Gamma(T\mathcal{F}_L)] \subset \Gamma(T\mathcal{F}_L) \}.$$

The cotangent lift of $W \in \mathfrak{X}(L)^{\mathcal{F}_L}$ pushes forward under $T^*L \to T^*\mathcal{F}_L$ to a Poisson vector field \widetilde{W} on $(T^*\mathcal{F}_L, \pi_{can})$.

Intermezzo: Poisson vector fields on $(T^*\mathcal{F}_L, \pi_{can})$

 (L, \mathcal{F}_L) foliated manifold. Denote

$$\mathfrak{X}(L)^{\mathcal{F}_L} := \{ W \in \mathfrak{X}(L) : [W, \Gamma(T\mathcal{F}_L)] \subset \Gamma(T\mathcal{F}_L) \}.$$

The cotangent lift of $W \in \mathfrak{X}(L)^{\mathcal{F}_L}$ pushes forward under $T^*L \to T^*\mathcal{F}_L$ to a Poisson vector field \widetilde{W} on $(T^*\mathcal{F}_L, \pi_{can})$.

Proposition

The first Poisson cohomology of $(T^*\mathcal{F}_L, \pi_{can})$ is:

$$\begin{aligned} & H^{1}_{\pi_{can}}(T^{*}\mathcal{F}_{L}) \cong \mathfrak{X}(L)^{\mathcal{F}_{L}}/\Gamma(T\mathcal{F}_{L}) \times H^{1}(\mathcal{F}_{L}) :\\ & [\widetilde{X} + \pi^{\sharp}_{can}(p^{*}\gamma)] \quad \longleftarrow \quad ([X], [\gamma]). \end{aligned}$$

Assume that $[V] \longleftrightarrow ([X], [\gamma])$ under

$$H^{1}_{\pi_{can}}(T^{*}\mathcal{F}_{L}) \cong \mathfrak{X}(L)^{\mathcal{F}_{L}}/\Gamma(T\mathcal{F}_{L}) \times H^{1}(\mathcal{F}_{L}).$$

Assume that $[V] \longleftrightarrow ([X], [\gamma])$ under

$$H^{1}_{\pi_{can}}(T^{*}\mathcal{F}_{L}) \cong \mathfrak{X}(L)^{\mathcal{F}_{L}}/\Gamma(T\mathcal{F}_{L}) \times H^{1}(\mathcal{F}_{L}).$$

Corollary (Normal form)

The local model around $L^n \subset Z \subset (M^{2n}, \pi)$ is $T^* \mathcal{F}_L \times \mathbb{R}$ with log-symplectic structure

$$(\widetilde{X} + \pi^{\sharp}_{can}(p^*\gamma)) \wedge t\partial_t + \pi_{can}.$$

Lagrangian deformations

Look at Lagrangian sections $(\alpha, f) \in \Gamma(T^* \mathcal{F}_L \times \mathbb{R})$ in the local model

$$\left(\mathcal{T}^*\mathcal{F}_L \times \mathbb{R}, \ (\widetilde{X} + \pi^{\sharp}_{can}(p^*\gamma)) \wedge t\partial_t + \pi_{can}\right).$$

Lagrangian deformations

Look at Lagrangian sections $(\alpha, f) \in \Gamma(T^* \mathcal{F}_L \times \mathbb{R})$ in the local model

$$\left(\mathcal{T}^*\mathcal{F}_L \times \mathbb{R}, \ (\widetilde{X} + \pi^{\sharp}_{can}(p^*\gamma)) \wedge t\partial_t + \pi_{can}\right).$$

Proposition

The image of a section $(\alpha, f) \in \Gamma(T^* \mathcal{F}_L \times \mathbb{R})$ is Lagrangian exactly when

$$\begin{cases} d_{\mathcal{F}_L}\alpha = 0\\ d_{\mathcal{F}_L}f + f(\gamma - \mathcal{L}_X\alpha) = 0 \end{cases}$$

Remarks

▶ If $\eta \in \Omega^1(\mathcal{F}_L)$ is closed, then we get a differential

$$d^{\eta}_{\mathcal{F}_{L}} \bullet := d_{\mathcal{F}_{L}} \bullet + \eta \wedge \bullet.$$

Denote the cohomology by $H^{\bullet}_{\eta}(\mathcal{F}_L)$.

Remarks

• If $\eta \in \Omega^1(\mathcal{F}_L)$ is closed, then we get a differential

$$d^{\eta}_{\mathcal{F}_{L}} \bullet := d_{\mathcal{F}_{L}} \bullet + \eta \wedge \bullet.$$

Denote the cohomology by $H^{\bullet}_{\eta}(\mathcal{F}_L)$.

▶ So $(\alpha, f) \in \Gamma(T^* \mathcal{F}_L \times \mathbb{R})$ is Lagrangian exactly when

$$\begin{cases} d_{\mathcal{F}_L}\alpha = 0\\ d_{\mathcal{F}_L}^{\gamma - \mathcal{L}_X\alpha}f = 0 \end{cases}$$

Deforming *L* into $Graph(\alpha, f)$ can be done in two steps:

- 1. Deform *L* inside singular locus along $\alpha \in \Omega^1_{cl}(\mathcal{F}_L)$.
- 2. Push $Graph(\alpha)$ out of singular locus along $f \in H^0_{\gamma-\mathcal{L}_X\alpha}(\mathcal{F}_L)$.

The DGLA behind the deformation problem

The equations for Lagrangian sections $(\alpha, f) \in \Gamma(T^* \mathcal{F}_L \times \mathbb{R})$ are the Maurer-Cartan equation of a DGLA.

The DGLA behind the deformation problem

The equations for Lagrangian sections $(\alpha, f) \in \Gamma(T^* \mathcal{F}_L \times \mathbb{R})$ are the Maurer-Cartan equation of a DGLA.

Proposition

The deformation problem of the Lagrangian L is governed by a DGLA structure on $\Gamma(\wedge^{\bullet}(T^*\mathcal{F}_L \times \mathbb{R})) = \Gamma(\wedge^{\bullet}T^*\mathcal{F}_L \oplus \wedge^{\bullet-1}T^*\mathcal{F}_L)$ whose structure maps $(d, \llbracket \cdot, \cdot \rrbracket)$ are defined by

$$d: \Gamma\left(\wedge^{k}\left(T^{*}\mathcal{F}_{L}\times\mathbb{R}\right)\right) \to \Gamma\left(\wedge^{k+1}\left(T^{*}\mathcal{F}_{L}\times\mathbb{R}\right)\right):$$

$$(\alpha,\beta)\mapsto\left(-d_{\mathcal{F}_{L}}\alpha,-d_{\mathcal{F}_{L}}\beta-\gamma\wedge\beta\right),$$

$$\llbracket\cdot,\cdot\rrbracket:\Gamma\left(\wedge^{k}\left(T^{*}\mathcal{F}_{L}\times\mathbb{R}\right)\right)\otimes\Gamma\left(\wedge^{l}\left(T^{*}\mathcal{F}_{L}\times\mathbb{R}\right)\right)\to\Gamma\left(\wedge^{k+l}\left(T^{*}\mathcal{F}_{L}\times\mathbb{R}\right)\right):$$

$$(\alpha,\beta)\otimes(\delta,\epsilon)\mapsto\left(0,\mathcal{L}_{X}\alpha\wedge\epsilon-(-1)^{kl}\mathcal{L}_{X}\delta\wedge\beta\right).$$

So $Gr(\alpha, f)$ is Lagrangian iff. $d(\alpha, f) + \frac{1}{2} \llbracket (\alpha, f), (\alpha, f) \rrbracket = 0.$

1. When do small deformations stay inside the singular locus?

When do small deformations stay inside the singular locus?
 Is the deformation problem obstructed?

- 1. When do small deformations stay inside the singular locus?
- 2. Is the deformation problem obstructed?
- (3. Moduli spaces.)

- 1. When do small deformations stay inside the singular locus?
- 2. Is the deformation problem obstructed?
- (3. Moduli spaces.)

Recall the two options:

- 1 (L, \mathcal{F}_L) is the foliation of a fibration $L \to S^1$.
- **2** all leaves of (L, \mathcal{F}_L) are dense.

Require that $H^0_{\gamma-\mathcal{L}_X\alpha}(\mathcal{F}_L) = 0$ for small $\alpha \in \Omega^1_{cl}(\mathcal{F}_L)$.

Require that $H^0_{\gamma-\mathcal{L}_X\alpha}(\mathcal{F}_L) = 0$ for small $\alpha \in \Omega^1_{cl}(\mathcal{F}_L)$.

Lemma

Let $\eta \in \Omega^1(\mathcal{F}_L)$ be leafwise closed.

Require that $H^0_{\gamma-\mathcal{L}_X\alpha}(\mathcal{F}_L) = 0$ for small $\alpha \in \Omega^1_{cl}(\mathcal{F}_L)$.

Lemma

Let $\eta \in \Omega^1(\mathcal{F}_L)$ be leafwise closed.

• If \mathcal{F}_L is given by fibration $p: L \to S^1$ then $H^1(\mathcal{F}_L) \cong \Gamma(\mathcal{H}^1)$, where

$$\mathcal{H}_q^1 = H^1(p^{-1}(q)).$$

Then

$$H^0_\eta(\mathcal{F}_L)\cong \{f\in C^\infty(S^1): f\cdot [\eta]=0\}.$$

Require that $H^0_{\gamma-\mathcal{L}_X\alpha}(\mathcal{F}_L) = 0$ for small $\alpha \in \Omega^1_{cl}(\mathcal{F}_L)$.

Lemma

Let $\eta \in \Omega^1(\mathcal{F}_L)$ be leafwise closed.

• If \mathcal{F}_L is given by fibration $p: L \to S^1$ then $H^1(\mathcal{F}_L) \cong \Gamma(\mathcal{H}^1)$, where

$$\mathcal{H}_q^1 = H^1(p^{-1}(q)).$$

Then

$$H^0_\eta(\mathcal{F}_L)\cong \{f\in C^\infty(S^1): f\cdot [\eta]=0\}.$$

• If the leaves of \mathcal{F}_L are dense, then

$$egin{aligned} \mathcal{H}^{\mathsf{0}}_{\eta}(\mathcal{F}_{\mathcal{L}}) = egin{cases} \mathbb{R} & ext{ if } \eta ext{ is exact} \ 0 & ext{ otherwise} \end{aligned}$$

•

Proposition

If $[\gamma] = 0$ in $H^1(\mathcal{F}_L)$, there is a path L_s not contained in the singular locus for s > 0.

Proposition

If $[\gamma] = 0$ in $H^1(\mathcal{F}_L)$, there is a path L_s not contained in the singular locus for s > 0.

Proposition

Suppose *F_L* is given by a fibration *L* → *S*¹. If for each leaf *B* of *F_L*, [γ|_B] ≠ 0 ∈ *H*¹(*B*), then *C*¹-small deformations of *L* stay inside the singular locus.

Proposition

If $[\gamma] = 0$ in $H^1(\mathcal{F}_L)$, there is a path L_s not contained in the singular locus for s > 0.

Proposition

- Suppose *F_L* is given by a fibration *L* → *S*¹. If for each leaf *B* of *F_L*, [γ|_B] ≠ 0 ∈ *H*¹(*B*), then *C*¹-small deformations of *L* stay inside the singular locus.
- Suppose *F_L* has dense leaves, and that *H¹(F_L)* is finite dimensional. If *γ* is not exact, then *C[∞]*-small deformations of *L* stay inside the singular locus.

Example

Consider $(\mathbb{T}^2 \times \mathbb{R}^2, \theta_1, \theta_2, x_1, x_2)$ with log-symplectic structure

$$\pi = (\partial_{\theta_1} + \partial_{x_2}) \wedge x_1 \partial_{x_1} + \partial_{\theta_2} \wedge \partial_{x_2}$$

and $L := \mathbb{T}^2$. The leaves of \mathcal{F}_L are fibers of $(\mathbb{T}^2, \theta_1, \theta_2) \to (S^1, \theta_1)$. As $\gamma = d\theta_2$, small deformations of \mathbb{T}^2 stay inside the singular locus.

Example

Consider $(\mathbb{T}^2 \times \mathbb{R}^2, \theta_1, \theta_2, x_1, x_2)$ with log-symplectic structure

$$\pi = (\partial_{\theta_1} + \partial_{x_2}) \wedge x_1 \partial_{x_1} + \partial_{\theta_2} \wedge \partial_{x_2}$$

and $L := \mathbb{T}^2$. The leaves of \mathcal{F}_L are fibers of $(\mathbb{T}^2, \theta_1, \theta_2) \to (S^1, \theta_1)$. As $\gamma = d\theta_2$, small deformations of \mathbb{T}^2 stay inside the singular locus.

Non-example

Consider $(\mathbb{T}^2 \times \mathbb{R}^2, \theta_1, \theta_2, x_1, x_2)$ with log-symplectic structure

$$\pi = (V + \partial_{\theta_1}) \wedge x_1 \partial_{x_1} + (\lambda \partial_{\theta_1} + \partial_{\theta_2}) \wedge \partial_{x_2}$$

Here $\lambda \in \mathbb{R} \setminus \mathbb{Q}$ is a Liouville number and V is a suitable Poisson vector field on the singular locus. Let $L := \mathbb{T}^2$, so \mathcal{F}_L is the Kronecker foliation. For any $k \ge 0$, there are arbitrarily \mathcal{C}^k -small deformations of L not contained in the singular locus.

Obstructedness of first order deformations

A deformation problem governed by a DGLA $(W, d, \llbracket \cdot, \cdot \rrbracket)$ is unobstructed if any closed $w \in W_1$ is tangent to a curve of Maurer-Cartan elements.

Obstructedness of first order deformations

A deformation problem governed by a DGLA $(W, d, \llbracket \cdot, \cdot \rrbracket)$ is unobstructed if any closed $w \in W_1$ is tangent to a curve of Maurer-Cartan elements.

Definition

The Kuranishi map of $(W, d, \llbracket \cdot, \cdot \rrbracket)$ is

$$Kr: H^1(W) \to H^2(W): [w] \mapsto [\llbracket w, w \rrbracket].$$

Proposition

w unobstructed
$$\Rightarrow Kr[w] = 0$$
.

An obstructed example

Consider $(\mathbb{T}^2 imes \mathbb{R}^2, heta_1, heta_2, x_1, x_2)$ with log-symplectic structure

$$\pi = \partial_{\theta_1} \wedge x_1 \partial_{x_1} + \partial_{\theta_2} \wedge \partial_{x_2}$$

and $L := \mathbb{T}^2 \times \{(0,0)\}$. Here $X = \partial_{\theta_1}$ and $\gamma = 0$.

The Kuranishi map reads

$$Kr[(gd\theta_2, f)] = \left[\left(0, 2f \frac{\partial g}{\partial \theta_1} d\theta_2\right)\right] \in H^2(\mathcal{F}_L) \oplus H^1(\mathcal{F}_L).$$

So

$$\operatorname{Kr}[(\operatorname{gd} \theta_2, f)] = 0 \Leftrightarrow \int_{S^1} f \frac{\partial g}{\partial \theta_1} d\theta_2 = 0.$$

e.g.: $(\sin(\theta_1)d\theta_2, \cos(\theta_1))$ is an obstructed first order deformation.

Criteria for unobstructedness

Proposition

For a first order deformation $(\alpha, f) \in \Omega^1(\mathcal{F}_L) \times C^{\infty}(L)$, the following are equivalent:

- 1. (α, f) is smoothly unobstructed,
- 2. $Kr[(\alpha, f)] = 0$,
- 3. $\mathcal{L}_X \alpha$ is exact on $L \setminus \mathcal{Z}_f$,
- 4. α extends to a closed one-form on $L \setminus \mathcal{Z}_f$.

Criteria for unobstructedness

Proposition

For a first order deformation $(\alpha, f) \in \Omega^1(\mathcal{F}_L) \times C^{\infty}(L)$, the following are equivalent:

- 1. (α, f) is smoothly unobstructed,
- 2. $Kr[(\alpha, f)] = 0$,
- 3. $\mathcal{L}_X \alpha$ is exact on $L \setminus \mathcal{Z}_f$,
- 4. α extends to a closed one-form on $L \setminus \mathcal{Z}_f$.

Example

Consider $(\mathbb{T}^2 imes \mathbb{R}^2, heta_1, heta_2, x_1, x_2)$ with log-symplectic structure

$$\pi = \partial_{\theta_1} \wedge x_1 \partial_{x_1} + (\lambda \partial_{\theta_1} + \partial_{\theta_2}) \wedge \partial_{x_2},$$

for $\lambda \in \mathbb{R} \setminus \mathbb{Q}$. Then $L = \mathbb{T}^2$ is Lagrangian with $T\mathcal{F}_L = \ker(d\theta_1 - \lambda d\theta_2)$.

- For generic λ , the deformation problem is unobstructed.
- For Liouville λ , the deformation problem is obstructed.

Thanks!

P.S.: Definition $\lambda \in \mathbb{R}$ is a Liouville number if for

 $\lambda \in \mathbb{R}$ is a Liouville number if for all integers $p \ge 1$, there exist $m_p, n_p \in \mathbb{Z}$ such that $n_p > 1$ and

$$0 < \left|\lambda - \frac{m_p}{n_p}\right| < \frac{1}{n_p^p}.$$