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Lagrangian submanifolds in symplectic geometry

Weinstein’s Lagrangian neighborhood theorem

Around a Lagrangian L,

(M, ω) ∼= (T ∗L, ωcan).

In the local model (T ∗L, ωcan):

I Gr(α) ⊂ (T ∗L, ωcan) is Lagrangian iff. dα = 0.

I Gr(α),Gr(β) ⊂ (T ∗L, ωcan) related by Hamiltonian
diffeomorphism iff. [α] = [β] in H1(L).

MHam(L) = H1(L).

What about the log-symplectic case?
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Lagrangian submanifolds in Poisson geometry

Definition1

L ⊂ (M, π) is Lagrangian if for all p ∈ L:

TpL ∩ TpS is a Lagrangian subspace of (TpS , (ωS)p).

Here (S , ωS) is the symplectic leaf through p ∈ L.

Examples

I Planes through the origin in (so∗3, πlin).

I Graphs of Poisson immersions φ : (M1, π1)→ (M2, π2).

1I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in
Mathematics, Birkhäuser, 1994
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Log-symplectic manifolds

Definition
(M2n, π) is log-symplectic if ∧nπ : M → ∧2nTM is transverse to
the zero section.

π is symplectic away from singular locus Z := (∧nπ)−1(0).

I Z is a hypersurface with induced corank-one Poisson
structure.

I (Z , π|Z ) has a Poisson vector field transverse to the
symplectic leaves: Vmod |Z .

Example

On (R2n, x1, y1, . . . , xn, yn):

π = ∂x1 ∧ y1∂y1 +
n∑

i=2

∂xi ∧ ∂yi .

Modular vector field is ∂x1 . This is the local model around p ∈ Z .
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Lagrangian submanifolds in log-symplectic geometry
L ⊂ (M2n,Z , π) Lagrangian.

I If L t Z : use b-symplectic geometry2. Around L:

(M, ω) ∼= (bT ∗L, ωcan).

Hence MHam(L) = bH1(L) ∼= H1(L)⊕ H0(L ∩ Z ).

I If L ⊂ Z then
I either dim L = n − 1 and components of L lie inside leaves,
I or dim L = n and L is transverse to the leaves of Z .

We focus on Ln ⊂ Z ⊂ M2n.
Ln compact, connected.

2C. Kirchhoff-Lukat, Aspects of Generalized Geometry: Branes with
Boundary, Blow-ups, Brackets and Bundles, PhD thesis, University of
Cambridge, 2018.
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Normal form for log-symplectic structure around L

Construct normal form in two steps: L ⊂ (Z , π|Z ) and Z ⊂ (M, π).

Step 1: General fact

L ⊂ (N, π) Lagrangian transverse to leaves. Then

I there is a neighborhood U of L s.t. π|U is regular.
→ L gets foliation FL.

I there is a canonical Poisson structure πcan on T ∗FL s.t.

T ∗FL =
∐

B∈FL

(T ∗B, ωT∗B).

I around L,
(N, π) ∼= (T ∗FL, πcan).
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Normal form for log-symplectic structure around L

Step 2: Z ⊂ (M , π)3

Let (M,Z , π) be an orientable log-symplectic manifold. The local
model for (M, π) around Z is Z × R with

Vmod |Z ∧ t∂t + π|Z .

Corollary (Normal form ad interim)

The local model around Ln ⊂ Z ⊂ (M2n, π) is T ∗FL × R with

V ∧ t∂t + πcan.

Here V is image of Vmod |Z under (Z , π|Z )
∼→ (T ∗FL, πcan).

We can choose any representative of [V ] ∈ H1
πcan(T ∗FL)...

3V. Guillemin, E. Miranda, A.R. Pires, Symplectic and Poisson geometry on
b-manifolds, Adv. Math. 264, p. 864-896 (2014).
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Intermezzo: Poisson vector fields on (T ∗FL, πcan)

(L,FL) foliated manifold. Denote

X(L)FL := {W ∈ X(L) : [W , Γ(TFL)] ⊂ Γ(TFL)}.

The cotangent lift of W ∈ X(L)FL pushes forward under

T ∗L→ T ∗FL to a Poisson vector field W̃ on (T ∗FL, πcan).

Proposition

The first Poisson cohomology of (T ∗FL, πcan) is:

H1
πcan(T ∗FL) ∼= X(L)FL/Γ(TFL)× H1(FL) :

[X̃ + π]can(p∗γ)] ←− ([X ], [γ]).
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Normal form for log-symplectic structure around L

Assume that [V ]←→ ([X ], [γ]) under

H1
πcan(T ∗FL) ∼= X(L)FL/Γ(TFL)× H1(FL).

Corollary (Normal form)

The local model around Ln ⊂ Z ⊂ (M2n, π) is T ∗FL × R with
log-symplectic structure

(X̃ + π]can(p∗γ)) ∧ t∂t + πcan.
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Lagrangian deformations

Look at Lagrangian sections (α, f ) ∈ Γ(T ∗FL × R) in the local
model (

T ∗FL × R, (X̃ + π]can(p∗γ)) ∧ t∂t + πcan

)
.

Proposition

The image of a section (α, f ) ∈ Γ(T ∗FL × R) is Lagrangian
exactly when {

dFL
α = 0

dFL
f + f (γ − LXα) = 0

.
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Remarks
I If η ∈ Ω1(FL) is closed, then we get a differential

dηFL
• := dFL

•+η ∧ •.

Denote the cohomology by H•η (FL).

I So (α, f ) ∈ Γ(T ∗FL × R) is Lagrangian exactly when{
dFL

α = 0

dγ−LXαFL
f = 0

.
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Deforming L into Graph(α, f ) can be done in two steps:

1. Deform L inside singular locus along α ∈ Ω1
cl(FL).

2. Push Graph(α) out of singular locus along f ∈ H0
γ−LXα(FL).

Ω1
cl(FL)

H0
γ(FL) H0

γ−LXα(FL)

0 α

(α, f )

12



The DGLA behind the deformation problem

The equations for Lagrangian sections (α, f ) ∈ Γ(T ∗FL × R) are
the Maurer-Cartan equation of a DGLA.

Proposition
The deformation problem of the Lagrangian L is governed by a
DGLA structure on Γ

(
∧• (T ∗FL×R)

)
= Γ(∧•T ∗FL⊕∧•−1T ∗FL)

whose structure maps (d , [[·, ·]]) are defined by

d : Γ
(
∧k
(
T ∗FL ×R

))
→ Γ

(
∧k+1 (T ∗FL ×R

))
:

(α, β) 7→ (−dFL
α,−dFL

β − γ ∧ β) ,

[[·, ·]] : Γ
(
∧k
(
T ∗FL ×R

))
⊗ Γ

(
∧l
(
T ∗FL ×R

))
→ Γ

(
∧k+l (T ∗FL ×R

))
:

(α, β)⊗ (δ, ε) 7→
(

0,LXα ∧ ε− (−1)klLX δ ∧ β
)
.

So Gr(α, f ) is Lagrangian iff. d(α, f ) + 1
2 [[(α, f ), (α, f )]] = 0.
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Some geometric aspects of the deformation problem

1. When do small deformations stay inside the singular locus?

2. Is the deformation problem obstructed?

(3. Moduli spaces.)

Recall the two options:

1 (L,FL) is the foliation of a fibration L→ S1.

2 all leaves of (L,FL) are dense.
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Deformations constrained to the singular locus

Require that H0
γ−LXα(FL) = 0 for small α ∈ Ω1

cl(FL).

Lemma
Let η ∈ Ω1(FL) be leafwise closed.

I If FL is given by fibration p : L→ S1 then H1(FL) ∼= Γ(H1),
where

H1
q = H1(p−1(q)).

Then
H0
η (FL) ∼= {f ∈ C∞(S1) : f · [η] = 0}.

I If the leaves of FL are dense, then

H0
η (FL) =

{
R if η is exact

0 otherwise
.
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Proposition

If [γ] = 0 in H1(FL), there is a path Ls not contained in the
singular locus for s > 0.

Proposition

I Suppose FL is given by a fibration L→ S1. If for each leaf B
of FL, [γ|B ] 6= 0 ∈ H1(B), then C1-small deformations of L
stay inside the singular locus.

I Suppose FL has dense leaves, and that H1(FL) is finite
dimensional. If γ is not exact, then C∞-small deformations of
L stay inside the singular locus.

16



Proposition

If [γ] = 0 in H1(FL), there is a path Ls not contained in the
singular locus for s > 0.

Proposition

I Suppose FL is given by a fibration L→ S1. If for each leaf B
of FL, [γ|B ] 6= 0 ∈ H1(B), then C1-small deformations of L
stay inside the singular locus.

I Suppose FL has dense leaves, and that H1(FL) is finite
dimensional. If γ is not exact, then C∞-small deformations of
L stay inside the singular locus.

16



Proposition

If [γ] = 0 in H1(FL), there is a path Ls not contained in the
singular locus for s > 0.

Proposition

I Suppose FL is given by a fibration L→ S1. If for each leaf B
of FL, [γ|B ] 6= 0 ∈ H1(B), then C1-small deformations of L
stay inside the singular locus.

I Suppose FL has dense leaves, and that H1(FL) is finite
dimensional. If γ is not exact, then C∞-small deformations of
L stay inside the singular locus.

16



Example

Consider (T2 × R2, θ1, θ2, x1, x2) with log-symplectic structure

π = (∂θ1 + ∂x2) ∧ x1∂x1 + ∂θ2 ∧ ∂x2

and L := T2. The leaves of FL are fibers of (T2, θ1, θ2)→ (S1, θ1).
As γ = dθ2, small deformations of T2 stay inside the singular locus.

Non-example

Consider (T2 × R2, θ1, θ2, x1, x2) with log-symplectic structure

π = (V + ∂θ1) ∧ x1∂x1 + (λ∂θ1 + ∂θ2) ∧ ∂x2 .

Here λ ∈ R \Q is a Liouville number and V is a suitable Poisson
vector field on the singular locus. Let L := T2, so FL is the
Kronecker foliation. For any k ≥ 0, there are arbitrarily Ck -small
deformations of L not contained in the singular locus.
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Obstructedness of first order deformations

A deformation problem governed by a DGLA (W , d , [[·, ·]]) is
unobstructed if any closed w ∈W1 is tangent to a curve of
Maurer-Cartan elements.

Definition
The Kuranishi map of (W , d , [[·, ·]]) is

Kr : H1(W )→ H2(W ) : [w ] 7→
[
[[w ,w ]]

]
.

Proposition

w unobstructed ⇒ Kr [w ] = 0.
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An obstructed example

Consider (T2 × R2, θ1, θ2, x1, x2) with log-symplectic structure

π = ∂θ1 ∧ x1∂x1 + ∂θ2 ∧ ∂x2

and L := T2 × {(0, 0)}. Here X = ∂θ1 and γ = 0.

The Kuranishi map reads

Kr [(gdθ2, f )] =

[(
0, 2f

∂g

∂θ1
dθ2

)]
∈ H2(FL)⊕ H1(FL).

So

Kr [(gdθ2, f )] = 0⇔
∫
S1

f
∂g

∂θ1
dθ2 = 0.

e.g.: (sin(θ1)dθ2, cos(θ1)) is an obstructed first order deformation.
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Criteria for unobstructedness

Proposition

For a first order deformation (α, f ) ∈ Ω1(FL)× C∞(L), the
following are equivalent:

1. (α, f ) is smoothly unobstructed,

2. Kr [(α, f )] = 0,

3. LXα is exact on L \ Zf ,

4. α extends to a closed one-form on L \ Zf .

Example
Consider (T2 × R2, θ1, θ2, x1, x2) with log-symplectic structure

π = ∂θ1 ∧ x1∂x1 + (λ∂θ1 + ∂θ2) ∧ ∂x2 ,

for λ ∈ R \Q. Then L = T2 is Lagrangian with TFL = ker(dθ1−λdθ2).

I For generic λ, the deformation problem is unobstructed.

I For Liouville λ, the deformation problem is obstructed.
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Thanks!

P.S.: Definition
λ ∈ R is a Liouville number if for all integers p ≥ 1, there exist
mp, np ∈ Z such that np > 1 and

0 <

∣∣∣∣λ− mp

np

∣∣∣∣ < 1

npp
.
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